![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsk0 | Structured version Visualization version GIF version |
Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tsk0 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4342 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑇) | |
2 | 0ss 4392 | . . . . . 6 ⊢ ∅ ⊆ 𝑥 | |
3 | tskss 10775 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇) | |
4 | 2, 3 | mp3an3 1447 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∅ ∈ 𝑇) |
5 | 4 | expcom 413 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
6 | 5 | exlimiv 1926 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
8 | 7 | impcom 407 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 ⊆ wss 3945 ∅c0 4318 Tarskictsk 10765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-tsk 10766 |
This theorem is referenced by: tsk1 10781 tskr1om 10784 |
Copyright terms: Public domain | W3C validator |