| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsk0 | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
| Ref | Expression |
|---|---|
| tsk0 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4352 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑇) | |
| 2 | 0ss 4399 | . . . . . 6 ⊢ ∅ ⊆ 𝑥 | |
| 3 | tskss 10799 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇) | |
| 4 | 2, 3 | mp3an3 1451 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∅ ∈ 𝑇) |
| 5 | 4 | expcom 413 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 6 | 5 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 8 | 7 | impcom 407 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 ∅c0 4332 Tarskictsk 10789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-tsk 10790 |
| This theorem is referenced by: tsk1 10805 tskr1om 10808 |
| Copyright terms: Public domain | W3C validator |