MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk0 Structured version   Visualization version   GIF version

Theorem tsk0 10450
Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsk0 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)

Proof of Theorem tsk0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . 3 (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥𝑇)
2 0ss 4327 . . . . . 6 ∅ ⊆ 𝑥
3 tskss 10445 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇)
42, 3mp3an3 1448 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∅ ∈ 𝑇)
54expcom 413 . . . 4 (𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
65exlimiv 1934 . . 3 (∃𝑥 𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
71, 6sylbi 216 . 2 (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
87impcom 407 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wne 2942  wss 3883  c0 4253  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-tsk 10436
This theorem is referenced by:  tsk1  10451  tskr1om  10454
  Copyright terms: Public domain W3C validator