MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk0 Structured version   Visualization version   GIF version

Theorem tsk0 10174
Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsk0 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)

Proof of Theorem tsk0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4260 . . 3 (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥𝑇)
2 0ss 4304 . . . . . 6 ∅ ⊆ 𝑥
3 tskss 10169 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇)
42, 3mp3an3 1447 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∅ ∈ 𝑇)
54expcom 417 . . . 4 (𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
65exlimiv 1931 . . 3 (∃𝑥 𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
71, 6sylbi 220 . 2 (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
87impcom 411 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wex 1781  wcel 2111  wne 2987  wss 3881  c0 4243  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-tsk 10160
This theorem is referenced by:  tsk1  10175  tskr1om  10178
  Copyright terms: Public domain W3C validator