MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk0 Structured version   Visualization version   GIF version

Theorem tsk0 10185
Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsk0 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)

Proof of Theorem tsk0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4310 . . 3 (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥𝑇)
2 0ss 4350 . . . . . 6 ∅ ⊆ 𝑥
3 tskss 10180 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇)
42, 3mp3an3 1446 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∅ ∈ 𝑇)
54expcom 416 . . . 4 (𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
65exlimiv 1931 . . 3 (∃𝑥 𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
71, 6sylbi 219 . 2 (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
87impcom 410 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wex 1780  wcel 2114  wne 3016  wss 3936  c0 4291  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-tsk 10171
This theorem is referenced by:  tsk1  10186  tskr1om  10189
  Copyright terms: Public domain W3C validator