| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsk0 | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
| Ref | Expression |
|---|---|
| tsk0 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4303 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑇) | |
| 2 | 0ss 4350 | . . . . . 6 ⊢ ∅ ⊆ 𝑥 | |
| 3 | tskss 10646 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇) | |
| 4 | 2, 3 | mp3an3 1452 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∅ ∈ 𝑇) |
| 5 | 4 | expcom 413 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇)) |
| 8 | 7 | impcom 407 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 Tarskictsk 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-tsk 10637 |
| This theorem is referenced by: tsk1 10652 tskr1om 10655 |
| Copyright terms: Public domain | W3C validator |