MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk0 Structured version   Visualization version   GIF version

Theorem tsk0 10754
Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsk0 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)

Proof of Theorem tsk0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4345 . . 3 (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥𝑇)
2 0ss 4395 . . . . . 6 ∅ ⊆ 𝑥
3 tskss 10749 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑇)
42, 3mp3an3 1450 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∅ ∈ 𝑇)
54expcom 414 . . . 4 (𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
65exlimiv 1933 . . 3 (∃𝑥 𝑥𝑇 → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
71, 6sylbi 216 . 2 (𝑇 ≠ ∅ → (𝑇 ∈ Tarski → ∅ ∈ 𝑇))
87impcom 408 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  wne 2940  wss 3947  c0 4321  Tarskictsk 10739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-tsk 10740
This theorem is referenced by:  tsk1  10755  tskr1om  10758
  Copyright terms: Public domain W3C validator