| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskr1om | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9528.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskr1om | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
| 2 | 1 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇)) |
| 3 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
| 4 | 3 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘𝑦) ∈ 𝑇)) |
| 5 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
| 6 | 5 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇)) |
| 7 | r10 9661 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
| 8 | tsk0 10654 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
| 9 | 7, 8 | eqeltrid 2835 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇) |
| 10 | tskpw 10644 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → 𝒫 (𝑅1‘𝑦) ∈ 𝑇) | |
| 11 | nnon 7802 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
| 12 | r1suc 9663 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
| 13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
| 14 | 13 | eleq1d 2816 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑇)) |
| 15 | 10, 14 | imbitrrid 246 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇)) |
| 16 | 15 | expd 415 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
| 17 | 16 | adantrd 491 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
| 18 | 2, 4, 6, 9, 17 | finds2 7828 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇)) |
| 19 | eleq1 2819 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) | |
| 20 | 19 | imbi2d 340 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
| 21 | 18, 20 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
| 22 | 21 | rexlimiv 3126 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇)) |
| 23 | r1fnon 9660 | . . . . 5 ⊢ 𝑅1 Fn On | |
| 24 | fnfun 6581 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
| 26 | fvelima 6887 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
| 27 | 25, 26 | mpan 690 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
| 28 | 22, 27 | syl11 33 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
| 29 | 28 | ssrdv 3935 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 “ cima 5617 Oncon0 6306 suc csuc 6308 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 ωcom 7796 𝑅1cr1 9655 Tarskictsk 10639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-tsk 10640 |
| This theorem is referenced by: tskr1om2 10659 tskinf 10660 |
| Copyright terms: Public domain | W3C validator |