Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskr1om | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9396.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
tskr1om | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇)) |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘𝑦) ∈ 𝑇)) |
5 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
6 | 5 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇)) |
7 | r10 9526 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
8 | tsk0 10519 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
9 | 7, 8 | eqeltrid 2843 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇) |
10 | tskpw 10509 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → 𝒫 (𝑅1‘𝑦) ∈ 𝑇) | |
11 | nnon 7718 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
12 | r1suc 9528 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
14 | 13 | eleq1d 2823 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑇)) |
15 | 10, 14 | syl5ibr 245 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇)) |
16 | 15 | expd 416 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
17 | 16 | adantrd 492 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
18 | 2, 4, 6, 9, 17 | finds2 7747 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇)) |
19 | eleq1 2826 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) | |
20 | 19 | imbi2d 341 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
21 | 18, 20 | syl5ibcom 244 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
22 | 21 | rexlimiv 3209 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇)) |
23 | r1fnon 9525 | . . . . 5 ⊢ 𝑅1 Fn On | |
24 | fnfun 6533 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
26 | fvelima 6835 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
27 | 25, 26 | mpan 687 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
28 | 22, 27 | syl11 33 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
29 | 28 | ssrdv 3927 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 “ cima 5592 Oncon0 6266 suc csuc 6268 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 ωcom 7712 𝑅1cr1 9520 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-tsk 10505 |
This theorem is referenced by: tskr1om2 10524 tskinf 10525 |
Copyright terms: Public domain | W3C validator |