| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskr1om | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9652.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskr1om | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
| 2 | 1 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇)) |
| 3 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
| 4 | 3 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘𝑦) ∈ 𝑇)) |
| 5 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
| 6 | 5 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇)) |
| 7 | r10 9782 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
| 8 | tsk0 10777 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
| 9 | 7, 8 | eqeltrid 2838 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇) |
| 10 | tskpw 10767 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → 𝒫 (𝑅1‘𝑦) ∈ 𝑇) | |
| 11 | nnon 7867 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
| 12 | r1suc 9784 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
| 13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
| 14 | 13 | eleq1d 2819 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑇)) |
| 15 | 10, 14 | imbitrrid 246 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇)) |
| 16 | 15 | expd 415 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
| 17 | 16 | adantrd 491 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
| 18 | 2, 4, 6, 9, 17 | finds2 7894 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇)) |
| 19 | eleq1 2822 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) | |
| 20 | 19 | imbi2d 340 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
| 21 | 18, 20 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
| 22 | 21 | rexlimiv 3134 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇)) |
| 23 | r1fnon 9781 | . . . . 5 ⊢ 𝑅1 Fn On | |
| 24 | fnfun 6638 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
| 26 | fvelima 6944 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
| 27 | 25, 26 | mpan 690 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
| 28 | 22, 27 | syl11 33 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
| 29 | 28 | ssrdv 3964 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 “ cima 5657 Oncon0 6352 suc csuc 6354 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 ωcom 7861 𝑅1cr1 9776 Tarskictsk 10762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-tsk 10763 |
| This theorem is referenced by: tskr1om2 10782 tskinf 10783 |
| Copyright terms: Public domain | W3C validator |