![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskr1om | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9707.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
tskr1om | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2829 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇)) |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
4 | 3 | eleq1d 2829 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘𝑦) ∈ 𝑇)) |
5 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
6 | 5 | eleq1d 2829 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇)) |
7 | r10 9837 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
8 | tsk0 10832 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
9 | 7, 8 | eqeltrid 2848 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇) |
10 | tskpw 10822 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → 𝒫 (𝑅1‘𝑦) ∈ 𝑇) | |
11 | nnon 7909 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
12 | r1suc 9839 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
14 | 13 | eleq1d 2829 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑇)) |
15 | 10, 14 | imbitrrid 246 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇)) |
16 | 15 | expd 415 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
17 | 16 | adantrd 491 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
18 | 2, 4, 6, 9, 17 | finds2 7938 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇)) |
19 | eleq1 2832 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) | |
20 | 19 | imbi2d 340 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
21 | 18, 20 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
22 | 21 | rexlimiv 3154 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇)) |
23 | r1fnon 9836 | . . . . 5 ⊢ 𝑅1 Fn On | |
24 | fnfun 6679 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
26 | fvelima 6987 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
27 | 25, 26 | mpan 689 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
28 | 22, 27 | syl11 33 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
29 | 28 | ssrdv 4014 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 “ cima 5703 Oncon0 6395 suc csuc 6397 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 ωcom 7903 𝑅1cr1 9831 Tarskictsk 10817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-tsk 10818 |
This theorem is referenced by: tskr1om2 10837 tskinf 10838 |
Copyright terms: Public domain | W3C validator |