Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskr1om | Structured version Visualization version GIF version |
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9326.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
tskr1om | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇)) |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘𝑦) ∈ 𝑇)) |
5 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
6 | 5 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇)) |
7 | r10 9457 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
8 | tsk0 10450 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
9 | 7, 8 | eqeltrid 2843 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇) |
10 | tskpw 10440 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → 𝒫 (𝑅1‘𝑦) ∈ 𝑇) | |
11 | nnon 7693 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
12 | r1suc 9459 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
14 | 13 | eleq1d 2823 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑇)) |
15 | 10, 14 | syl5ibr 245 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1‘𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇)) |
16 | 15 | expd 415 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
17 | 16 | adantrd 491 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1‘𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇))) |
18 | 2, 4, 6, 9, 17 | finds2 7721 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇)) |
19 | eleq1 2826 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) | |
20 | 19 | imbi2d 340 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
21 | 18, 20 | syl5ibcom 244 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇))) |
22 | 21 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦 ∈ 𝑇)) |
23 | r1fnon 9456 | . . . . 5 ⊢ 𝑅1 Fn On | |
24 | fnfun 6517 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
26 | fvelima 6817 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
27 | 25, 26 | mpan 686 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
28 | 22, 27 | syl11 33 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
29 | 28 | ssrdv 3923 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 “ cima 5583 Oncon0 6251 suc csuc 6253 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 ωcom 7687 𝑅1cr1 9451 Tarskictsk 10435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-tsk 10436 |
This theorem is referenced by: tskr1om2 10455 tskinf 10456 |
Copyright terms: Public domain | W3C validator |