MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om Structured version   Visualization version   GIF version

Theorem tskr1om 10781
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9652.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
tskr1om ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2819 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇))
3 fveq2 6876 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2819 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1𝑦) ∈ 𝑇))
5 fveq2 6876 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2819 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇))
7 r10 9782 . . . . . . 7 (𝑅1‘∅) = ∅
8 tsk0 10777 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
97, 8eqeltrid 2838 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇)
10 tskpw 10767 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → 𝒫 (𝑅1𝑦) ∈ 𝑇)
11 nnon 7867 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
12 r1suc 9784 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1311, 12syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1413eleq1d 2819 . . . . . . . . 9 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑇))
1510, 14imbitrrid 246 . . . . . . . 8 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇))
1615expd 415 . . . . . . 7 (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
1716adantrd 491 . . . . . 6 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
182, 4, 6, 9, 17finds2 7894 . . . . 5 (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇))
19 eleq1 2822 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑇𝑦𝑇))
2019imbi2d 340 . . . . 5 ((𝑅1𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2118, 20syl5ibcom 245 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2221rexlimiv 3134 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇))
23 r1fnon 9781 . . . . 5 𝑅1 Fn On
24 fnfun 6638 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2523, 24ax-mp 5 . . . 4 Fun 𝑅1
26 fvelima 6944 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2725, 26mpan 690 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2822, 27syl11 33 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑇))
2928ssrdv 3964 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  wss 3926  c0 4308  𝒫 cpw 4575  cima 5657  Oncon0 6352  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  cfv 6531  ωcom 7861  𝑅1cr1 9776  Tarskictsk 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-tsk 10763
This theorem is referenced by:  tskr1om2  10782  tskinf  10783
  Copyright terms: Public domain W3C validator