| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsk1 | Structured version Visualization version GIF version | ||
| Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| tsk1 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8418 | . 2 ⊢ 1o = {∅} | |
| 2 | tsk0 10692 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
| 3 | tsksn 10689 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇) | |
| 4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {csn 4585 1oc1o 8404 Tarskictsk 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-pow 5315 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-suc 6326 df-1o 8411 df-tsk 10678 |
| This theorem is referenced by: tsk2 10694 |
| Copyright terms: Public domain | W3C validator |