MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk1 Structured version   Visualization version   GIF version

Theorem tsk1 10717
Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tsk1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)

Proof of Theorem tsk1
StepHypRef Expression
1 df1o2 8441 . 2 1o = {∅}
2 tsk0 10716 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
3 tsksn 10713 . . 3 ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇)
42, 3syldan 591 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇)
51, 4eqeltrid 2832 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  c0 4296  {csn 4589  1oc1o 8427  Tarskictsk 10701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-pow 5320
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-suc 6338  df-1o 8434  df-tsk 10702
This theorem is referenced by:  tsk2  10718
  Copyright terms: Public domain W3C validator