![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsk1 | Structured version Visualization version GIF version |
Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
tsk1 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8512 | . 2 ⊢ 1o = {∅} | |
2 | tsk0 10801 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
3 | tsksn 10798 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇) | |
4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 {csn 4631 1oc1o 8498 Tarskictsk 10786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-suc 6392 df-1o 8505 df-tsk 10787 |
This theorem is referenced by: tsk2 10803 |
Copyright terms: Public domain | W3C validator |