| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsk1 | Structured version Visualization version GIF version | ||
| Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| tsk1 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8492 | . 2 ⊢ 1o = {∅} | |
| 2 | tsk0 10782 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | |
| 3 | tsksn 10779 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇) | |
| 4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇) |
| 5 | 1, 4 | eqeltrid 2839 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {csn 4606 1oc1o 8478 Tarskictsk 10767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-suc 6363 df-1o 8485 df-tsk 10768 |
| This theorem is referenced by: tsk2 10784 |
| Copyright terms: Public domain | W3C validator |