MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llycmpkgen2 Structured version   Visualization version   GIF version

Theorem llycmpkgen2 23558
Description: A locally compact space is compactly generated. (This variant of llycmpkgen 23560 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
iskgen3.1 𝑋 = 𝐽
llycmpkgen2.2 (𝜑𝐽 ∈ Top)
llycmpkgen2.3 ((𝜑𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
Assertion
Ref Expression
llycmpkgen2 (𝜑𝐽 ∈ ran 𝑘Gen)
Distinct variable groups:   𝑥,𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem llycmpkgen2
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llycmpkgen2.2 . 2 (𝜑𝐽 ∈ Top)
2 elssuni 4937 . . . . . . . . . . 11 (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢 (𝑘Gen‘𝐽))
32adantl 481 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 (𝑘Gen‘𝐽))
4 iskgen3.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
54kgenuni 23547 . . . . . . . . . . . 12 (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))
61, 5syl 17 . . . . . . . . . . 11 (𝜑𝑋 = (𝑘Gen‘𝐽))
76adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑋 = (𝑘Gen‘𝐽))
83, 7sseqtrrd 4021 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢𝑋)
98sselda 3983 . . . . . . . 8 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → 𝑥𝑋)
10 llycmpkgen2.3 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
1110adantlr 715 . . . . . . . 8 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
129, 11syldan 591 . . . . . . 7 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
131ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝐽 ∈ Top)
14 difss 4136 . . . . . . . . . 10 (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋
154ntropn 23057 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽)
1613, 14, 15sylancl 586 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽)
17 simprl 771 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ ((nei‘𝐽)‘{𝑥}))
184neii1 23114 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑘𝑋)
1913, 17, 18syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
204ntropn 23057 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑘𝑋) → ((int‘𝐽)‘𝑘) ∈ 𝐽)
2113, 19, 20syl2anc 584 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ∈ 𝐽)
22 inopn 22905 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽 ∧ ((int‘𝐽)‘𝑘) ∈ 𝐽) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽)
2313, 16, 21, 22syl3anc 1373 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽)
24 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑢)
254ntrss2 23065 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑘𝑋) → ((int‘𝐽)‘𝑘) ⊆ 𝑘)
2613, 19, 25syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ⊆ 𝑘)
279adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑋)
2827snssd 4809 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → {𝑥} ⊆ 𝑋)
294neiint 23112 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝑋𝑘𝑋) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)))
3013, 28, 19, 29syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)))
3117, 30mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → {𝑥} ⊆ ((int‘𝐽)‘𝑘))
32 vex 3484 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3332snss 4785 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((int‘𝐽)‘𝑘) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))
3431, 33sylibr 234 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘𝑘))
3526, 34sseldd 3984 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑘)
3624, 35elind 4200 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑢𝑘))
37 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑢 ∈ (𝑘Gen‘𝐽))
38 simprr 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
39 kgeni 23545 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑢𝑘) ∈ (𝐽t 𝑘))
4037, 38, 39syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ∈ (𝐽t 𝑘))
41 vex 3484 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
42 resttop 23168 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑘 ∈ V) → (𝐽t 𝑘) ∈ Top)
4313, 41, 42sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
44 inss2 4238 . . . . . . . . . . . . . . . 16 (𝑢𝑘) ⊆ 𝑘
454restuni 23170 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑘𝑋) → 𝑘 = (𝐽t 𝑘))
4613, 19, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 = (𝐽t 𝑘))
4744, 46sseqtrid 4026 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ (𝐽t 𝑘))
48 eqid 2737 . . . . . . . . . . . . . . . 16 (𝐽t 𝑘) = (𝐽t 𝑘)
4948isopn3 23074 . . . . . . . . . . . . . . 15 (((𝐽t 𝑘) ∈ Top ∧ (𝑢𝑘) ⊆ (𝐽t 𝑘)) → ((𝑢𝑘) ∈ (𝐽t 𝑘) ↔ ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘)))
5043, 47, 49syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∈ (𝐽t 𝑘) ↔ ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘)))
5140, 50mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘))
5244a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ 𝑘)
53 eqid 2737 . . . . . . . . . . . . . . 15 (𝐽t 𝑘) = (𝐽t 𝑘)
544, 53restntr 23190 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑘𝑋 ∧ (𝑢𝑘) ⊆ 𝑘) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5513, 19, 52, 54syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5651, 55eqtr3d 2779 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5736, 56eleqtrd 2843 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5857elin1d 4204 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))))
59 undif3 4300 . . . . . . . . . . . . 13 ((𝑢𝑘) ∪ (𝑋𝑘)) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢𝑘)))
60 incom 4209 . . . . . . . . . . . . . . . 16 (𝑢𝑘) = (𝑘𝑢)
6160difeq2i 4123 . . . . . . . . . . . . . . 15 (𝑘 ∖ (𝑢𝑘)) = (𝑘 ∖ (𝑘𝑢))
62 difin 4272 . . . . . . . . . . . . . . 15 (𝑘 ∖ (𝑘𝑢)) = (𝑘𝑢)
6361, 62eqtri 2765 . . . . . . . . . . . . . 14 (𝑘 ∖ (𝑢𝑘)) = (𝑘𝑢)
6463difeq2i 4123 . . . . . . . . . . . . 13 (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢𝑘))) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢))
6559, 64eqtri 2765 . . . . . . . . . . . 12 ((𝑢𝑘) ∪ (𝑋𝑘)) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢))
6644, 19sstrid 3995 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ 𝑋)
67 ssequn1 4186 . . . . . . . . . . . . . 14 ((𝑢𝑘) ⊆ 𝑋 ↔ ((𝑢𝑘) ∪ 𝑋) = 𝑋)
6866, 67sylib 218 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∪ 𝑋) = 𝑋)
6968difeq1d 4125 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢)) = (𝑋 ∖ (𝑘𝑢)))
7065, 69eqtrid 2789 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∪ (𝑋𝑘)) = (𝑋 ∖ (𝑘𝑢)))
7170fveq2d 6910 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) = ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))))
7258, 71eleqtrd 2843 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))))
7372, 34elind 4200 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)))
74 sslin 4243 . . . . . . . . . 10 (((int‘𝐽)‘𝑘) ⊆ 𝑘 → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘))
7526, 74syl 17 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘))
764ntrss2 23065 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢)))
7713, 14, 76sylancl 586 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢)))
7877difss2d 4139 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ 𝑋)
79 reldisj 4453 . . . . . . . . . . . 12 (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ 𝑋 → ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢))))
8078, 79syl 17 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢))))
8177, 80mpbird 257 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅)
82 inssdif0 4374 . . . . . . . . . 10 ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘) ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅)
8381, 82sylibr 234 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘) ⊆ 𝑢)
8475, 83sstrd 3994 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)
85 eleq2 2830 . . . . . . . . . 10 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑥𝑧𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘))))
86 sseq1 4009 . . . . . . . . . 10 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑧𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢))
8785, 86anbi12d 632 . . . . . . . . 9 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → ((𝑥𝑧𝑧𝑢) ↔ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)))
8887rspcev 3622 . . . . . . . 8 (((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽 ∧ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
8923, 73, 84, 88syl12anc 837 . . . . . . 7 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
9012, 89rexlimddv 3161 . . . . . 6 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
9190ralrimiva 3146 . . . . 5 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢))
9291ex 412 . . . 4 (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
93 eltop2 22982 . . . . 5 (𝐽 ∈ Top → (𝑢𝐽 ↔ ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
941, 93syl 17 . . . 4 (𝜑 → (𝑢𝐽 ↔ ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
9592, 94sylibrd 259 . . 3 (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢𝐽))
9695ssrdv 3989 . 2 (𝜑 → (𝑘Gen‘𝐽) ⊆ 𝐽)
97 iskgen2 23556 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
981, 96, 97sylanbrc 583 1 (𝜑𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   cuni 4907  ran crn 5686  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  intcnt 23025  neicnei 23105  Compccmp 23394  𝑘Genckgen 23541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-ntr 23028  df-nei 23106  df-cmp 23395  df-kgen 23542
This theorem is referenced by:  cmpkgen  23559  llycmpkgen  23560
  Copyright terms: Public domain W3C validator