| Step | Hyp | Ref
| Expression |
| 1 | | llycmpkgen2.2 |
. 2
⊢ (𝜑 → 𝐽 ∈ Top) |
| 2 | | elssuni 4937 |
. . . . . . . . . . 11
⊢ (𝑢 ∈
(𝑘Gen‘𝐽)
→ 𝑢 ⊆ ∪ (𝑘Gen‘𝐽)) |
| 3 | 2 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 ⊆ ∪
(𝑘Gen‘𝐽)) |
| 4 | | iskgen3.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
| 5 | 4 | kgenuni 23547 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
| 6 | 1, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
| 8 | 3, 7 | sseqtrrd 4021 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 ⊆ 𝑋) |
| 9 | 8 | sselda 3983 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝑋) |
| 10 | | llycmpkgen2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 11 | 10 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 12 | 9, 11 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 13 | 1 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝐽 ∈ Top) |
| 14 | | difss 4136 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋 |
| 15 | 4 | ntropn 23057 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽) |
| 16 | 13, 14, 15 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽) |
| 17 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) |
| 18 | 4 | neii1 23114 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑘 ⊆ 𝑋) |
| 19 | 13, 17, 18 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ⊆ 𝑋) |
| 20 | 4 | ntropn 23057 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → ((int‘𝐽)‘𝑘) ∈ 𝐽) |
| 21 | 13, 19, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ∈ 𝐽) |
| 22 | | inopn 22905 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽 ∧ ((int‘𝐽)‘𝑘) ∈ 𝐽) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽) |
| 23 | 13, 16, 21, 22 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽) |
| 24 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑢) |
| 25 | 4 | ntrss2 23065 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → ((int‘𝐽)‘𝑘) ⊆ 𝑘) |
| 26 | 13, 19, 25 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ⊆ 𝑘) |
| 27 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑋) |
| 28 | 27 | snssd 4809 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → {𝑥} ⊆ 𝑋) |
| 29 | 4 | neiint 23112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝑋 ∧ 𝑘 ⊆ 𝑋) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))) |
| 30 | 13, 28, 19, 29 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))) |
| 31 | 17, 30 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → {𝑥} ⊆ ((int‘𝐽)‘𝑘)) |
| 32 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
| 33 | 32 | snss 4785 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((int‘𝐽)‘𝑘) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)) |
| 34 | 31, 33 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘𝑘)) |
| 35 | 26, 34 | sseldd 3984 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑘) |
| 36 | 24, 35 | elind 4200 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑢 ∩ 𝑘)) |
| 37 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑢 ∈ (𝑘Gen‘𝐽)) |
| 38 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Comp) |
| 39 | | kgeni 23545 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑢
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 41 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
| 42 | | resttop 23168 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ V) → (𝐽 ↾t 𝑘) ∈ Top) |
| 43 | 13, 41, 42 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
| 44 | | inss2 4238 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∩ 𝑘) ⊆ 𝑘 |
| 45 | 4 | restuni 23170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → 𝑘 = ∪ (𝐽 ↾t 𝑘)) |
| 46 | 13, 19, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 = ∪ (𝐽 ↾t 𝑘)) |
| 47 | 44, 46 | sseqtrid 4026 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ ∪ (𝐽 ↾t 𝑘)) |
| 48 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ ∪ (𝐽
↾t 𝑘) =
∪ (𝐽 ↾t 𝑘) |
| 49 | 48 | isopn3 23074 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ (𝑢 ∩ 𝑘) ⊆ ∪ (𝐽 ↾t 𝑘)) → ((𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ↔ ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘))) |
| 50 | 43, 47, 49 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ↔ ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘))) |
| 51 | 40, 50 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘)) |
| 52 | 44 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ 𝑘) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑘) |
| 54 | 4, 53 | restntr 23190 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋 ∧ (𝑢 ∩ 𝑘) ⊆ 𝑘) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
| 55 | 13, 19, 52, 54 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
| 56 | 51, 55 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
| 57 | 36, 56 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
| 58 | 57 | elin1d 4204 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)))) |
| 59 | | undif3 4300 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢 ∩ 𝑘))) |
| 60 | | incom 4209 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∩ 𝑘) = (𝑘 ∩ 𝑢) |
| 61 | 60 | difeq2i 4123 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∖ (𝑢 ∩ 𝑘)) = (𝑘 ∖ (𝑘 ∩ 𝑢)) |
| 62 | | difin 4272 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∖ (𝑘 ∩ 𝑢)) = (𝑘 ∖ 𝑢) |
| 63 | 61, 62 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∖ (𝑢 ∩ 𝑘)) = (𝑘 ∖ 𝑢) |
| 64 | 63 | difeq2i 4123 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢 ∩ 𝑘))) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) |
| 65 | 59, 64 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) |
| 66 | 44, 19 | sstrid 3995 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ 𝑋) |
| 67 | | ssequn1 4186 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑘) ⊆ 𝑋 ↔ ((𝑢 ∩ 𝑘) ∪ 𝑋) = 𝑋) |
| 68 | 66, 67 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∪ 𝑋) = 𝑋) |
| 69 | 68 | difeq1d 4125 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) = (𝑋 ∖ (𝑘 ∖ 𝑢))) |
| 70 | 65, 69 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (𝑋 ∖ (𝑘 ∖ 𝑢))) |
| 71 | 70 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) = ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢)))) |
| 72 | 58, 71 | eleqtrd 2843 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢)))) |
| 73 | 72, 34 | elind 4200 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘))) |
| 74 | | sslin 4243 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘𝑘) ⊆ 𝑘 → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘)) |
| 75 | 26, 74 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘)) |
| 76 | 4 | ntrss2 23065 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢))) |
| 77 | 13, 14, 76 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢))) |
| 78 | 77 | difss2d 4139 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ 𝑋) |
| 79 | | reldisj 4453 |
. . . . . . . . . . . 12
⊢
(((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ 𝑋 → ((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢)))) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢)))) |
| 81 | 77, 80 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅) |
| 82 | | inssdif0 4374 |
. . . . . . . . . 10
⊢
((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘) ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅) |
| 83 | 81, 82 | sylibr 234 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘) ⊆ 𝑢) |
| 84 | 75, 83 | sstrd 3994 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢) |
| 85 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)))) |
| 86 | | sseq1 4009 |
. . . . . . . . . 10
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑧 ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) |
| 87 | 85, 86 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → ((𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢) ↔ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢))) |
| 88 | 87 | rspcev 3622 |
. . . . . . . 8
⊢
(((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽 ∧ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
| 89 | 23, 73, 84, 88 | syl12anc 837 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
| 90 | 12, 89 | rexlimddv 3161 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
| 91 | 90 | ralrimiva 3146 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
| 92 | 91 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 93 | | eltop2 22982 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝑢 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 94 | 1, 93 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 95 | 92, 94 | sylibrd 259 |
. . 3
⊢ (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢 ∈ 𝐽)) |
| 96 | 95 | ssrdv 3989 |
. 2
⊢ (𝜑 → (𝑘Gen‘𝐽) ⊆ 𝐽) |
| 97 | | iskgen2 23556 |
. 2
⊢ (𝐽 ∈ ran 𝑘Gen ↔
(𝐽 ∈ Top ∧
(𝑘Gen‘𝐽)
⊆ 𝐽)) |
| 98 | 1, 96, 97 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) |