MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llycmpkgen2 Structured version   Visualization version   GIF version

Theorem llycmpkgen2 23574
Description: A locally compact space is compactly generated. (This variant of llycmpkgen 23576 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
iskgen3.1 𝑋 = 𝐽
llycmpkgen2.2 (𝜑𝐽 ∈ Top)
llycmpkgen2.3 ((𝜑𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
Assertion
Ref Expression
llycmpkgen2 (𝜑𝐽 ∈ ran 𝑘Gen)
Distinct variable groups:   𝑥,𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem llycmpkgen2
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llycmpkgen2.2 . 2 (𝜑𝐽 ∈ Top)
2 elssuni 4942 . . . . . . . . . . 11 (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢 (𝑘Gen‘𝐽))
32adantl 481 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 (𝑘Gen‘𝐽))
4 iskgen3.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
54kgenuni 23563 . . . . . . . . . . . 12 (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))
61, 5syl 17 . . . . . . . . . . 11 (𝜑𝑋 = (𝑘Gen‘𝐽))
76adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑋 = (𝑘Gen‘𝐽))
83, 7sseqtrrd 4037 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢𝑋)
98sselda 3995 . . . . . . . 8 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → 𝑥𝑋)
10 llycmpkgen2.3 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
1110adantlr 715 . . . . . . . 8 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
129, 11syldan 591 . . . . . . 7 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
131ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝐽 ∈ Top)
14 difss 4146 . . . . . . . . . 10 (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋
154ntropn 23073 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽)
1613, 14, 15sylancl 586 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽)
17 simprl 771 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ ((nei‘𝐽)‘{𝑥}))
184neii1 23130 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑘𝑋)
1913, 17, 18syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
204ntropn 23073 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑘𝑋) → ((int‘𝐽)‘𝑘) ∈ 𝐽)
2113, 19, 20syl2anc 584 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ∈ 𝐽)
22 inopn 22921 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∈ 𝐽 ∧ ((int‘𝐽)‘𝑘) ∈ 𝐽) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽)
2313, 16, 21, 22syl3anc 1370 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽)
24 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑢)
254ntrss2 23081 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑘𝑋) → ((int‘𝐽)‘𝑘) ⊆ 𝑘)
2613, 19, 25syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ⊆ 𝑘)
279adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑋)
2827snssd 4814 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → {𝑥} ⊆ 𝑋)
294neiint 23128 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝑋𝑘𝑋) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)))
3013, 28, 19, 29syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)))
3117, 30mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → {𝑥} ⊆ ((int‘𝐽)‘𝑘))
32 vex 3482 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3332snss 4790 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((int‘𝐽)‘𝑘) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))
3431, 33sylibr 234 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘𝑘))
3526, 34sseldd 3996 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥𝑘)
3624, 35elind 4210 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑢𝑘))
37 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑢 ∈ (𝑘Gen‘𝐽))
38 simprr 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
39 kgeni 23561 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑢𝑘) ∈ (𝐽t 𝑘))
4037, 38, 39syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ∈ (𝐽t 𝑘))
41 vex 3482 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
42 resttop 23184 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑘 ∈ V) → (𝐽t 𝑘) ∈ Top)
4313, 41, 42sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
44 inss2 4246 . . . . . . . . . . . . . . . 16 (𝑢𝑘) ⊆ 𝑘
454restuni 23186 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑘𝑋) → 𝑘 = (𝐽t 𝑘))
4613, 19, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 = (𝐽t 𝑘))
4744, 46sseqtrid 4048 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ (𝐽t 𝑘))
48 eqid 2735 . . . . . . . . . . . . . . . 16 (𝐽t 𝑘) = (𝐽t 𝑘)
4948isopn3 23090 . . . . . . . . . . . . . . 15 (((𝐽t 𝑘) ∈ Top ∧ (𝑢𝑘) ⊆ (𝐽t 𝑘)) → ((𝑢𝑘) ∈ (𝐽t 𝑘) ↔ ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘)))
5043, 47, 49syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∈ (𝐽t 𝑘) ↔ ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘)))
5140, 50mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (𝑢𝑘))
5244a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ 𝑘)
53 eqid 2735 . . . . . . . . . . . . . . 15 (𝐽t 𝑘) = (𝐽t 𝑘)
544, 53restntr 23206 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑘𝑋 ∧ (𝑢𝑘) ⊆ 𝑘) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5513, 19, 52, 54syl3anc 1370 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘(𝐽t 𝑘))‘(𝑢𝑘)) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5651, 55eqtr3d 2777 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) = (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5736, 56eleqtrd 2841 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) ∩ 𝑘))
5857elin1d 4214 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))))
59 undif3 4306 . . . . . . . . . . . . 13 ((𝑢𝑘) ∪ (𝑋𝑘)) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢𝑘)))
60 incom 4217 . . . . . . . . . . . . . . . 16 (𝑢𝑘) = (𝑘𝑢)
6160difeq2i 4133 . . . . . . . . . . . . . . 15 (𝑘 ∖ (𝑢𝑘)) = (𝑘 ∖ (𝑘𝑢))
62 difin 4278 . . . . . . . . . . . . . . 15 (𝑘 ∖ (𝑘𝑢)) = (𝑘𝑢)
6361, 62eqtri 2763 . . . . . . . . . . . . . 14 (𝑘 ∖ (𝑢𝑘)) = (𝑘𝑢)
6463difeq2i 4133 . . . . . . . . . . . . 13 (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢𝑘))) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢))
6559, 64eqtri 2763 . . . . . . . . . . . 12 ((𝑢𝑘) ∪ (𝑋𝑘)) = (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢))
6644, 19sstrid 4007 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑢𝑘) ⊆ 𝑋)
67 ssequn1 4196 . . . . . . . . . . . . . 14 ((𝑢𝑘) ⊆ 𝑋 ↔ ((𝑢𝑘) ∪ 𝑋) = 𝑋)
6866, 67sylib 218 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∪ 𝑋) = 𝑋)
6968difeq1d 4135 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((𝑢𝑘) ∪ 𝑋) ∖ (𝑘𝑢)) = (𝑋 ∖ (𝑘𝑢)))
7065, 69eqtrid 2787 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑢𝑘) ∪ (𝑋𝑘)) = (𝑋 ∖ (𝑘𝑢)))
7170fveq2d 6911 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘((𝑢𝑘) ∪ (𝑋𝑘))) = ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))))
7258, 71eleqtrd 2841 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))))
7372, 34elind 4210 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)))
74 sslin 4251 . . . . . . . . . 10 (((int‘𝐽)‘𝑘) ⊆ 𝑘 → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘))
7526, 74syl 17 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘))
764ntrss2 23081 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢)))
7713, 14, 76sylancl 586 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢)))
7877difss2d 4149 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ 𝑋)
79 reldisj 4459 . . . . . . . . . . . 12 (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ 𝑋 → ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢))))
8078, 79syl 17 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ⊆ (𝑋 ∖ (𝑘𝑢))))
8177, 80mpbird 257 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅)
82 inssdif0 4380 . . . . . . . . . 10 ((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘) ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ (𝑘𝑢)) = ∅)
8381, 82sylibr 234 . . . . . . . . 9 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ 𝑘) ⊆ 𝑢)
8475, 83sstrd 4006 . . . . . . . 8 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)
85 eleq2 2828 . . . . . . . . . 10 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑥𝑧𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘))))
86 sseq1 4021 . . . . . . . . . 10 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑧𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢))
8785, 86anbi12d 632 . . . . . . . . 9 (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) → ((𝑥𝑧𝑧𝑢) ↔ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)))
8887rspcev 3622 . . . . . . . 8 (((((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽 ∧ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
8923, 73, 84, 88syl12anc 837 . . . . . . 7 ((((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝑘) ∈ Comp)) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
9012, 89rexlimddv 3159 . . . . . 6 (((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥𝑢) → ∃𝑧𝐽 (𝑥𝑧𝑧𝑢))
9190ralrimiva 3144 . . . . 5 ((𝜑𝑢 ∈ (𝑘Gen‘𝐽)) → ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢))
9291ex 412 . . . 4 (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
93 eltop2 22998 . . . . 5 (𝐽 ∈ Top → (𝑢𝐽 ↔ ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
941, 93syl 17 . . . 4 (𝜑 → (𝑢𝐽 ↔ ∀𝑥𝑢𝑧𝐽 (𝑥𝑧𝑧𝑢)))
9592, 94sylibrd 259 . . 3 (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢𝐽))
9695ssrdv 4001 . 2 (𝜑 → (𝑘Gen‘𝐽) ⊆ 𝐽)
97 iskgen2 23572 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
981, 96, 97sylanbrc 583 1 (𝜑𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631   cuni 4912  ran crn 5690  cfv 6563  (class class class)co 7431  t crest 17467  Topctop 22915  intcnt 23041  neicnei 23121  Compccmp 23410  𝑘Genckgen 23557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-en 8985  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-ntr 23044  df-nei 23122  df-cmp 23411  df-kgen 23558
This theorem is referenced by:  cmpkgen  23575  llycmpkgen  23576
  Copyright terms: Public domain W3C validator