Step | Hyp | Ref
| Expression |
1 | | llycmpkgen2.2 |
. 2
⊢ (𝜑 → 𝐽 ∈ Top) |
2 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ (𝑢 ∈
(𝑘Gen‘𝐽)
→ 𝑢 ⊆ ∪ (𝑘Gen‘𝐽)) |
3 | 2 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 ⊆ ∪
(𝑘Gen‘𝐽)) |
4 | | iskgen3.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
5 | 4 | kgenuni 22690 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
6 | 1, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
8 | 3, 7 | sseqtrrd 3962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → 𝑢 ⊆ 𝑋) |
9 | 8 | sselda 3921 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝑋) |
10 | | llycmpkgen2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
11 | 10 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
12 | 9, 11 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
13 | 1 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝐽 ∈ Top) |
14 | | difss 4066 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋 |
15 | 4 | ntropn 22200 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽) |
16 | 13, 14, 15 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽) |
17 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) |
18 | 4 | neii1 22257 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑘 ⊆ 𝑋) |
19 | 13, 17, 18 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ⊆ 𝑋) |
20 | 4 | ntropn 22200 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → ((int‘𝐽)‘𝑘) ∈ 𝐽) |
21 | 13, 19, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ∈ 𝐽) |
22 | | inopn 22048 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∈ 𝐽 ∧ ((int‘𝐽)‘𝑘) ∈ 𝐽) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽) |
23 | 13, 16, 21, 22 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽) |
24 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑢) |
25 | 4 | ntrss2 22208 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → ((int‘𝐽)‘𝑘) ⊆ 𝑘) |
26 | 13, 19, 25 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘𝑘) ⊆ 𝑘) |
27 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑋) |
28 | 27 | snssd 4742 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → {𝑥} ⊆ 𝑋) |
29 | 4 | neiint 22255 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝑋 ∧ 𝑘 ⊆ 𝑋) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))) |
30 | 13, 28, 19, 29 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘))) |
31 | 17, 30 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → {𝑥} ⊆ ((int‘𝐽)‘𝑘)) |
32 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
33 | 32 | snss 4719 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((int‘𝐽)‘𝑘) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑘)) |
34 | 31, 33 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘𝑘)) |
35 | 26, 34 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ 𝑘) |
36 | 24, 35 | elind 4128 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑢 ∩ 𝑘)) |
37 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑢 ∈ (𝑘Gen‘𝐽)) |
38 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Comp) |
39 | | kgeni 22688 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑢
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
41 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
42 | | resttop 22311 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ V) → (𝐽 ↾t 𝑘) ∈ Top) |
43 | 13, 41, 42 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
44 | | inss2 4163 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∩ 𝑘) ⊆ 𝑘 |
45 | 4 | restuni 22313 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋) → 𝑘 = ∪ (𝐽 ↾t 𝑘)) |
46 | 13, 19, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 = ∪ (𝐽 ↾t 𝑘)) |
47 | 44, 46 | sseqtrid 3973 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ ∪ (𝐽 ↾t 𝑘)) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ ∪ (𝐽
↾t 𝑘) =
∪ (𝐽 ↾t 𝑘) |
49 | 48 | isopn3 22217 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ (𝑢 ∩ 𝑘) ⊆ ∪ (𝐽 ↾t 𝑘)) → ((𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ↔ ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘))) |
50 | 43, 47, 49 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ↔ ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘))) |
51 | 40, 50 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (𝑢 ∩ 𝑘)) |
52 | 44 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ 𝑘) |
53 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑘) |
54 | 4, 53 | restntr 22333 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑘 ⊆ 𝑋 ∧ (𝑢 ∩ 𝑘) ⊆ 𝑘) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
55 | 13, 19, 52, 54 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘(𝐽 ↾t 𝑘))‘(𝑢 ∩ 𝑘)) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
56 | 51, 55 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) = (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
57 | 36, 56 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) ∩ 𝑘)) |
58 | 57 | elin1d 4132 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)))) |
59 | | undif3 4224 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢 ∩ 𝑘))) |
60 | | incom 4135 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∩ 𝑘) = (𝑘 ∩ 𝑢) |
61 | 60 | difeq2i 4054 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∖ (𝑢 ∩ 𝑘)) = (𝑘 ∖ (𝑘 ∩ 𝑢)) |
62 | | difin 4195 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∖ (𝑘 ∩ 𝑢)) = (𝑘 ∖ 𝑢) |
63 | 61, 62 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∖ (𝑢 ∩ 𝑘)) = (𝑘 ∖ 𝑢) |
64 | 63 | difeq2i 4054 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ (𝑢 ∩ 𝑘))) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) |
65 | 59, 64 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) |
66 | 44, 19 | sstrid 3932 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑢 ∩ 𝑘) ⊆ 𝑋) |
67 | | ssequn1 4114 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑘) ⊆ 𝑋 ↔ ((𝑢 ∩ 𝑘) ∪ 𝑋) = 𝑋) |
68 | 66, 67 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∪ 𝑋) = 𝑋) |
69 | 68 | difeq1d 4056 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((𝑢 ∩ 𝑘) ∪ 𝑋) ∖ (𝑘 ∖ 𝑢)) = (𝑋 ∖ (𝑘 ∖ 𝑢))) |
70 | 65, 69 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘)) = (𝑋 ∖ (𝑘 ∖ 𝑢))) |
71 | 70 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘((𝑢 ∩ 𝑘) ∪ (𝑋 ∖ 𝑘))) = ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢)))) |
72 | 58, 71 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢)))) |
73 | 72, 34 | elind 4128 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘))) |
74 | | sslin 4168 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘𝑘) ⊆ 𝑘 → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘)) |
75 | 26, 74 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘)) |
76 | 4 | ntrss2 22208 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝑘 ∖ 𝑢)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢))) |
77 | 13, 14, 76 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢))) |
78 | 77 | difss2d 4069 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ 𝑋) |
79 | | reldisj 4385 |
. . . . . . . . . . . 12
⊢
(((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ 𝑋 → ((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢)))) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅ ↔ ((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ⊆ (𝑋 ∖ (𝑘 ∖ 𝑢)))) |
81 | 77, 80 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅) |
82 | | inssdif0 4303 |
. . . . . . . . . 10
⊢
((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘) ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ (𝑘 ∖ 𝑢)) = ∅) |
83 | 81, 82 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ 𝑘) ⊆ 𝑢) |
84 | 75, 83 | sstrd 3931 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢) |
85 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)))) |
86 | | sseq1 3946 |
. . . . . . . . . 10
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → (𝑧 ⊆ 𝑢 ↔ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) |
87 | 85, 86 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑧 = (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) → ((𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢) ↔ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢))) |
88 | 87 | rspcev 3561 |
. . . . . . . 8
⊢
(((((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∈ 𝐽 ∧ (𝑥 ∈ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ∧ (((int‘𝐽)‘(𝑋 ∖ (𝑘 ∖ 𝑢))) ∩ ((int‘𝐽)‘𝑘)) ⊆ 𝑢)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
89 | 23, 73, 84, 88 | syl12anc 834 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) ∧ (𝑘 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
90 | 12, 89 | rexlimddv 3220 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) ∧ 𝑥 ∈ 𝑢) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
91 | 90 | ralrimiva 3103 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑘Gen‘𝐽)) → ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
92 | 91 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
93 | | eltop2 22125 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝑢 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
94 | 1, 93 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑢 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑢 ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
95 | 92, 94 | sylibrd 258 |
. . 3
⊢ (𝜑 → (𝑢 ∈ (𝑘Gen‘𝐽) → 𝑢 ∈ 𝐽)) |
96 | 95 | ssrdv 3927 |
. 2
⊢ (𝜑 → (𝑘Gen‘𝐽) ⊆ 𝐽) |
97 | | iskgen2 22699 |
. 2
⊢ (𝐽 ∈ ran 𝑘Gen ↔
(𝐽 ∈ Top ∧
(𝑘Gen‘𝐽)
⊆ 𝐽)) |
98 | 1, 96, 97 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) |