Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemb Structured version   Visualization version   GIF version

Theorem hgt750lemb 32536
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
Assertion
Ref Expression
hgt750lemb (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑖,𝑗,𝑛   𝑁,𝑐,𝑖,𝑗,𝑛   𝜑,𝑐,𝑖,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝑁(𝑧)   𝑂(𝑖,𝑗,𝑛,𝑐)

Proof of Theorem hgt750lemb
Dummy variables 𝑑 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgt750leme.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnnn0d 12223 . . . . 5 (𝜑𝑁 ∈ ℕ0)
3 3nn0 12181 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝜑 → 3 ∈ ℕ0)
5 ssidd 3940 . . . . 5 (𝜑 → ℕ ⊆ ℕ)
62, 4, 5reprfi2 32503 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
7 hgt750lemb.a . . . . 5 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
87ssrab3 4011 . . . 4 𝐴 ⊆ (ℕ(repr‘3)𝑁)
9 ssfi 8918 . . . 4 (((ℕ(repr‘3)𝑁) ∈ Fin ∧ 𝐴 ⊆ (ℕ(repr‘3)𝑁)) → 𝐴 ∈ Fin)
106, 8, 9sylancl 585 . . 3 (𝜑𝐴 ∈ Fin)
11 vmaf 26173 . . . . . 6 Λ:ℕ⟶ℝ
1211a1i 11 . . . . 5 ((𝜑𝑛𝐴) → Λ:ℕ⟶ℝ)
13 ssidd 3940 . . . . . . 7 ((𝜑𝑛𝐴) → ℕ ⊆ ℕ)
141nnzd 12354 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑁 ∈ ℤ)
163a1i 11 . . . . . . 7 ((𝜑𝑛𝐴) → 3 ∈ ℕ0)
17 simpr 484 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛𝐴)
188, 17sselid 3915 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
1913, 15, 16, 18reprf 32492 . . . . . 6 ((𝜑𝑛𝐴) → 𝑛:(0..^3)⟶ℕ)
20 c0ex 10900 . . . . . . . . 9 0 ∈ V
2120tpid1 4701 . . . . . . . 8 0 ∈ {0, 1, 2}
22 fzo0to3tp 13401 . . . . . . . 8 (0..^3) = {0, 1, 2}
2321, 22eleqtrri 2838 . . . . . . 7 0 ∈ (0..^3)
2423a1i 11 . . . . . 6 ((𝜑𝑛𝐴) → 0 ∈ (0..^3))
2519, 24ffvelrnd 6944 . . . . 5 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
2612, 25ffvelrnd 6944 . . . 4 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ)
27 1ex 10902 . . . . . . . . . 10 1 ∈ V
2827tpid2 4703 . . . . . . . . 9 1 ∈ {0, 1, 2}
2928, 22eleqtrri 2838 . . . . . . . 8 1 ∈ (0..^3)
3029a1i 11 . . . . . . 7 ((𝜑𝑛𝐴) → 1 ∈ (0..^3))
3119, 30ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
3212, 31ffvelrnd 6944 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ)
33 2ex 11980 . . . . . . . . . 10 2 ∈ V
3433tpid3 4706 . . . . . . . . 9 2 ∈ {0, 1, 2}
3534, 22eleqtrri 2838 . . . . . . . 8 2 ∈ (0..^3)
3635a1i 11 . . . . . . 7 ((𝜑𝑛𝐴) → 2 ∈ (0..^3))
3719, 36ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
3812, 37ffvelrnd 6944 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ)
3932, 38remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4026, 39remulcld 10936 . . 3 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
4110, 40fsumrecl 15374 . 2 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
421nnrpd 12699 . . . 4 (𝜑𝑁 ∈ ℝ+)
4342relogcld 25683 . . 3 (𝜑 → (log‘𝑁) ∈ ℝ)
4426, 32remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ∈ ℝ)
4510, 44fsumrecl 15374 . . 3 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ∈ ℝ)
4643, 45remulcld 10936 . 2 (𝜑 → ((log‘𝑁) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ∈ ℝ)
47 fzfi 13620 . . . . . . . 8 (1...𝑁) ∈ Fin
48 diffi 8979 . . . . . . . 8 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
4947, 48ax-mp 5 . . . . . . 7 ((1...𝑁) ∖ ℙ) ∈ Fin
50 snfi 8788 . . . . . . 7 {2} ∈ Fin
51 unfi 8917 . . . . . . 7 ((((1...𝑁) ∖ ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
5249, 50, 51mp2an 688 . . . . . 6 (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin
5352a1i 11 . . . . 5 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
5411a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → Λ:ℕ⟶ℝ)
55 difss 4062 . . . . . . . . . 10 ((1...𝑁) ∖ ℙ) ⊆ (1...𝑁)
5655a1i 11 . . . . . . . . 9 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ (1...𝑁))
57 2nn 11976 . . . . . . . . . . . 12 2 ∈ ℕ
5857a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ)
59 hgt750lemb.2 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑁)
60 elfz1b 13254 . . . . . . . . . . . 12 (2 ∈ (1...𝑁) ↔ (2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁))
6160biimpri 227 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁) → 2 ∈ (1...𝑁))
6258, 1, 59, 61syl3anc 1369 . . . . . . . . . 10 (𝜑 → 2 ∈ (1...𝑁))
6362snssd 4739 . . . . . . . . 9 (𝜑 → {2} ⊆ (1...𝑁))
6456, 63unssd 4116 . . . . . . . 8 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ (1...𝑁))
65 fz1ssnn 13216 . . . . . . . . 9 (1...𝑁) ⊆ ℕ
6665a1i 11 . . . . . . . 8 (𝜑 → (1...𝑁) ⊆ ℕ)
6764, 66sstrd 3927 . . . . . . 7 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
6867sselda 3917 . . . . . 6 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈ ℕ)
6954, 68ffvelrnd 6944 . . . . 5 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℝ)
7053, 69fsumrecl 15374 . . . 4 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) ∈ ℝ)
71 fzfid 13621 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
7211a1i 11 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
7366sselda 3917 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
7472, 73ffvelrnd 6944 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
7571, 74fsumrecl 15374 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ)
7670, 75remulcld 10936 . . 3 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ∈ ℝ)
7743, 76remulcld 10936 . 2 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ∈ ℝ)
781adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑁 ∈ ℕ)
7978nnrpd 12699 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑁 ∈ ℝ+)
80 relogcl 25636 . . . . . . 7 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
8179, 80syl 17 . . . . . 6 ((𝜑𝑛𝐴) → (log‘𝑁) ∈ ℝ)
8232, 81remulcld 10936 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (log‘𝑁)) ∈ ℝ)
8326, 82remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))) ∈ ℝ)
84 vmage0 26175 . . . . . 6 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
8525, 84syl 17 . . . . 5 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘0)))
86 vmage0 26175 . . . . . . 7 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
8731, 86syl 17 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘1)))
8837nnrpd 12699 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℝ+)
8988relogcld 25683 . . . . . . 7 ((𝜑𝑛𝐴) → (log‘(𝑛‘2)) ∈ ℝ)
90 vmalelog 26258 . . . . . . . 8 ((𝑛‘2) ∈ ℕ → (Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2)))
9137, 90syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2)))
9213, 15, 16, 18, 36reprle 32494 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝑛‘2) ≤ 𝑁)
93 logleb 25663 . . . . . . . . 9 (((𝑛‘2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑛‘2) ≤ 𝑁 ↔ (log‘(𝑛‘2)) ≤ (log‘𝑁)))
9493biimpa 476 . . . . . . . 8 ((((𝑛‘2) ∈ ℝ+𝑁 ∈ ℝ+) ∧ (𝑛‘2) ≤ 𝑁) → (log‘(𝑛‘2)) ≤ (log‘𝑁))
9588, 79, 92, 94syl21anc 834 . . . . . . 7 ((𝜑𝑛𝐴) → (log‘(𝑛‘2)) ≤ (log‘𝑁))
9638, 89, 81, 91, 95letrd 11062 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘𝑁))
9738, 81, 32, 87, 96lemul2ad 11845 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ≤ ((Λ‘(𝑛‘1)) · (log‘𝑁)))
9839, 82, 26, 85, 97lemul2ad 11845 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))))
9910, 40, 83, 98fsumle 15439 . . 3 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))))
1001nncnd 11919 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1011nnne0d 11953 . . . . . 6 (𝜑𝑁 ≠ 0)
102100, 101logcld 25631 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℂ)
10344recnd 10934 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ∈ ℂ)
10410, 102, 103fsummulc2 15424 . . . 4 (𝜑 → ((log‘𝑁) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = Σ𝑛𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))))
105102adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → (log‘𝑁) ∈ ℂ)
106105, 103mulcomd 10927 . . . . . 6 ((𝜑𝑛𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = (((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) · (log‘𝑁)))
10726recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ)
10832recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ)
109107, 108, 105mulassd 10929 . . . . . 6 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) · (log‘𝑁)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))))
110106, 109eqtrd 2778 . . . . 5 ((𝜑𝑛𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))))
111110sumeq2dv 15343 . . . 4 (𝜑 → Σ𝑛𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))))
112104, 111eqtr2d 2779 . . 3 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (log‘𝑁))) = ((log‘𝑁) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))))
11399, 112breqtrd 5096 . 2 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))))
1141nnred 11918 . . . 4 (𝜑𝑁 ∈ ℝ)
1151nnge1d 11951 . . . 4 (𝜑 → 1 ≤ 𝑁)
116114, 115logge0d 25690 . . 3 (𝜑 → 0 ≤ (log‘𝑁))
117 xpfi 9015 . . . . . 6 (((((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)) ∈ Fin)
11853, 71, 117syl2anc 583 . . . . 5 (𝜑 → ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)) ∈ Fin)
11911a1i 11 . . . . . . 7 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → Λ:ℕ⟶ℝ)
12067adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
121 xp1st 7836 . . . . . . . . 9 (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)) → (1st𝑢) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}))
122121adantl 481 . . . . . . . 8 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (1st𝑢) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}))
123120, 122sseldd 3918 . . . . . . 7 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (1st𝑢) ∈ ℕ)
124119, 123ffvelrnd 6944 . . . . . 6 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (Λ‘(1st𝑢)) ∈ ℝ)
125 xp2nd 7837 . . . . . . . . 9 (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)) → (2nd𝑢) ∈ (1...𝑁))
126125adantl 481 . . . . . . . 8 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (2nd𝑢) ∈ (1...𝑁))
12765, 126sselid 3915 . . . . . . 7 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (2nd𝑢) ∈ ℕ)
128119, 127ffvelrnd 6944 . . . . . 6 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → (Λ‘(2nd𝑢)) ∈ ℝ)
129124, 128remulcld 10936 . . . . 5 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) ∈ ℝ)
130 vmage0 26175 . . . . . . 7 ((1st𝑢) ∈ ℕ → 0 ≤ (Λ‘(1st𝑢)))
131123, 130syl 17 . . . . . 6 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → 0 ≤ (Λ‘(1st𝑢)))
132 vmage0 26175 . . . . . . 7 ((2nd𝑢) ∈ ℕ → 0 ≤ (Λ‘(2nd𝑢)))
133127, 132syl 17 . . . . . 6 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → 0 ≤ (Λ‘(2nd𝑢)))
134124, 128, 131, 133mulge0d 11482 . . . . 5 ((𝜑𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))) → 0 ≤ ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))))
135 ssidd 3940 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → ℕ ⊆ ℕ)
13614adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝑁 ∈ ℤ)
1373a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 3 ∈ ℕ0)
138 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝐴) → 𝑐𝐴)
1398, 138sselid 3915 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝑐 ∈ (ℕ(repr‘3)𝑁))
140135, 136, 137, 139reprf 32492 . . . . . . . . . . . . 13 ((𝜑𝑐𝐴) → 𝑐:(0..^3)⟶ℕ)
14123a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐𝐴) → 0 ∈ (0..^3))
142140, 141ffvelrnd 6944 . . . . . . . . . . . 12 ((𝜑𝑐𝐴) → (𝑐‘0) ∈ ℕ)
1431adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐𝐴) → 𝑁 ∈ ℕ)
144135, 136, 137, 139, 141reprle 32494 . . . . . . . . . . . 12 ((𝜑𝑐𝐴) → (𝑐‘0) ≤ 𝑁)
145 elfz1b 13254 . . . . . . . . . . . . 13 ((𝑐‘0) ∈ (1...𝑁) ↔ ((𝑐‘0) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘0) ≤ 𝑁))
146145biimpri 227 . . . . . . . . . . . 12 (((𝑐‘0) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘0) ≤ 𝑁) → (𝑐‘0) ∈ (1...𝑁))
147142, 143, 144, 146syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → (𝑐‘0) ∈ (1...𝑁))
1487rabeq2i 3412 . . . . . . . . . . . . . 14 (𝑐𝐴 ↔ (𝑐 ∈ (ℕ(repr‘3)𝑁) ∧ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
149148simprbi 496 . . . . . . . . . . . . 13 (𝑐𝐴 → ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ))
150 hgt750leme.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
151150oddprm2 32535 . . . . . . . . . . . . . 14 (ℙ ∖ {2}) = (𝑂 ∩ ℙ)
152151eleq2i 2830 . . . . . . . . . . . . 13 ((𝑐‘0) ∈ (ℙ ∖ {2}) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ))
153149, 152sylnibr 328 . . . . . . . . . . . 12 (𝑐𝐴 → ¬ (𝑐‘0) ∈ (ℙ ∖ {2}))
154138, 153syl 17 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → ¬ (𝑐‘0) ∈ (ℙ ∖ {2}))
155147, 154jca 511 . . . . . . . . . 10 ((𝜑𝑐𝐴) → ((𝑐‘0) ∈ (1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ ∖ {2})))
156 eldif 3893 . . . . . . . . . 10 ((𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2})) ↔ ((𝑐‘0) ∈ (1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ ∖ {2})))
157155, 156sylibr 233 . . . . . . . . 9 ((𝜑𝑐𝐴) → (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2})))
158 uncom 4083 . . . . . . . . . . . . 13 (((1...𝑁) ∖ ℙ) ∪ {2}) = ({2} ∪ ((1...𝑁) ∖ ℙ))
159 undif3 4221 . . . . . . . . . . . . 13 ({2} ∪ ((1...𝑁) ∖ ℙ)) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖ {2}))
160158, 159eqtri 2766 . . . . . . . . . . . 12 (((1...𝑁) ∖ ℙ) ∪ {2}) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖ {2}))
161 ssequn1 4110 . . . . . . . . . . . . . 14 ({2} ⊆ (1...𝑁) ↔ ({2} ∪ (1...𝑁)) = (1...𝑁))
16263, 161sylib 217 . . . . . . . . . . . . 13 (𝜑 → ({2} ∪ (1...𝑁)) = (1...𝑁))
163162difeq1d 4052 . . . . . . . . . . . 12 (𝜑 → (({2} ∪ (1...𝑁)) ∖ (ℙ ∖ {2})) = ((1...𝑁) ∖ (ℙ ∖ {2})))
164160, 163syl5eq 2791 . . . . . . . . . . 11 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) = ((1...𝑁) ∖ (ℙ ∖ {2})))
165164eleq2d 2824 . . . . . . . . . 10 (𝜑 → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2}))))
166165adantr 480 . . . . . . . . 9 ((𝜑𝑐𝐴) → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2}))))
167157, 166mpbird 256 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}))
16829a1i 11 . . . . . . . . . 10 ((𝜑𝑐𝐴) → 1 ∈ (0..^3))
169140, 168ffvelrnd 6944 . . . . . . . . 9 ((𝜑𝑐𝐴) → (𝑐‘1) ∈ ℕ)
170135, 136, 137, 139, 168reprle 32494 . . . . . . . . 9 ((𝜑𝑐𝐴) → (𝑐‘1) ≤ 𝑁)
171 elfz1b 13254 . . . . . . . . . 10 ((𝑐‘1) ∈ (1...𝑁) ↔ ((𝑐‘1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘1) ≤ 𝑁))
172171biimpri 227 . . . . . . . . 9 (((𝑐‘1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘1) ≤ 𝑁) → (𝑐‘1) ∈ (1...𝑁))
173169, 143, 170, 172syl3anc 1369 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑐‘1) ∈ (1...𝑁))
174167, 173opelxpd 5618 . . . . . . 7 ((𝜑𝑐𝐴) → ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)))
175174ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑐𝐴 ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)))
176 fveq1 6755 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
177 fveq1 6755 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑‘1) = (𝑐‘1))
178176, 177opeq12d 4809 . . . . . . . 8 (𝑑 = 𝑐 → ⟨(𝑑‘0), (𝑑‘1)⟩ = ⟨(𝑐‘0), (𝑐‘1)⟩)
179178cbvmptv 5183 . . . . . . 7 (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) = (𝑐𝐴 ↦ ⟨(𝑐‘0), (𝑐‘1)⟩)
180179rnmptss 6978 . . . . . 6 (∀𝑐𝐴 ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)) → ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)))
181175, 180syl 17 . . . . 5 (𝜑 → ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)))
182118, 129, 134, 181fsumless 15436 . . . 4 (𝜑 → Σ𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) ≤ Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))))
183 fvex 6769 . . . . . . . 8 (𝑛‘0) ∈ V
184 fvex 6769 . . . . . . . 8 (𝑛‘1) ∈ V
185183, 184op1std 7814 . . . . . . 7 (𝑢 = ⟨(𝑛‘0), (𝑛‘1)⟩ → (1st𝑢) = (𝑛‘0))
186185fveq2d 6760 . . . . . 6 (𝑢 = ⟨(𝑛‘0), (𝑛‘1)⟩ → (Λ‘(1st𝑢)) = (Λ‘(𝑛‘0)))
187183, 184op2ndd 7815 . . . . . . 7 (𝑢 = ⟨(𝑛‘0), (𝑛‘1)⟩ → (2nd𝑢) = (𝑛‘1))
188187fveq2d 6760 . . . . . 6 (𝑢 = ⟨(𝑛‘0), (𝑛‘1)⟩ → (Λ‘(2nd𝑢)) = (Λ‘(𝑛‘1)))
189186, 188oveq12d 7273 . . . . 5 (𝑢 = ⟨(𝑛‘0), (𝑛‘1)⟩ → ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) = ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))))
190 opex 5373 . . . . . . . 8 ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ V
191190rgenw 3075 . . . . . . 7 𝑐𝐴 ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ V
192179fnmpt 6557 . . . . . . 7 (∀𝑐𝐴 ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ V → (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) Fn 𝐴)
193191, 192mp1i 13 . . . . . 6 (𝜑 → (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) Fn 𝐴)
194 eqidd 2739 . . . . . 6 (𝜑 → ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) = ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩))
195140ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑐:(0..^3)⟶ℕ)
196195ffnd 6585 . . . . . . . . . 10 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑐 Fn (0..^3))
19719ad4ant13 747 . . . . . . . . . . 11 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑛:(0..^3)⟶ℕ)
198197ffnd 6585 . . . . . . . . . 10 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑛 Fn (0..^3))
199 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛))
200179a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) = (𝑐𝐴 ↦ ⟨(𝑐‘0), (𝑐‘1)⟩))
201190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐𝐴) → ⟨(𝑐‘0), (𝑐‘1)⟩ ∈ V)
202200, 201fvmpt2d 6870 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐𝐴) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ⟨(𝑐‘0), (𝑐‘1)⟩)
203202adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ⟨(𝑐‘0), (𝑐‘1)⟩)
204203adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ⟨(𝑐‘0), (𝑐‘1)⟩)
205 fveq1 6755 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑛 → (𝑐‘0) = (𝑛‘0))
206 fveq1 6755 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑛 → (𝑐‘1) = (𝑛‘1))
207205, 206opeq12d 4809 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑛 → ⟨(𝑐‘0), (𝑐‘1)⟩ = ⟨(𝑛‘0), (𝑛‘1)⟩)
208 opex 5373 . . . . . . . . . . . . . . . . . . . 20 ⟨(𝑛‘0), (𝑛‘1)⟩ ∈ V
209208a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐴) → ⟨(𝑛‘0), (𝑛‘1)⟩ ∈ V)
210179, 207, 17, 209fvmptd3 6880 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐴) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) = ⟨(𝑛‘0), (𝑛‘1)⟩)
211210adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) = ⟨(𝑛‘0), (𝑛‘1)⟩)
212211adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) = ⟨(𝑛‘0), (𝑛‘1)⟩)
213199, 204, 2123eqtr3d 2786 . . . . . . . . . . . . . . 15 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → ⟨(𝑐‘0), (𝑐‘1)⟩ = ⟨(𝑛‘0), (𝑛‘1)⟩)
214183, 184opth2 5389 . . . . . . . . . . . . . . 15 (⟨(𝑐‘0), (𝑐‘1)⟩ = ⟨(𝑛‘0), (𝑛‘1)⟩ ↔ ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1)))
215213, 214sylib 217 . . . . . . . . . . . . . 14 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1)))
216215simpld 494 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → (𝑐‘0) = (𝑛‘0))
217216ad2antrr 722 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘0) = (𝑛‘0))
218 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → 𝑖 = 0)
219218fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐𝑖) = (𝑐‘0))
220218fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑛𝑖) = (𝑛‘0))
221217, 219, 2203eqtr4d 2788 . . . . . . . . . . 11 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐𝑖) = (𝑛𝑖))
222215simprd 495 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → (𝑐‘1) = (𝑛‘1))
223222ad2antrr 722 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘1) = (𝑛‘1))
224 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → 𝑖 = 1)
225224fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐𝑖) = (𝑐‘1))
226224fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑛𝑖) = (𝑛‘1))
227223, 225, 2263eqtr4d 2788 . . . . . . . . . . 11 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐𝑖) = (𝑛𝑖))
228216ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) = (𝑛‘0))
229222ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) = (𝑛‘1))
230228, 229oveq12d 7273 . . . . . . . . . . . . . 14 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) = ((𝑛‘0) + (𝑛‘1)))
231230oveq2d 7271 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑁 − ((𝑐‘0) + (𝑐‘1))) = (𝑁 − ((𝑛‘0) + (𝑛‘1))))
23222a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0..^3) = {0, 1, 2})
233232sumeq1d 15341 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑐𝑗))
234 ssidd 3940 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ℕ ⊆ ℕ)
235136ad4antr 728 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℤ)
2363a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 3 ∈ ℕ0)
237139ad4antr 728 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑐 ∈ (ℕ(repr‘3)𝑁))
238234, 235, 236, 237reprsum 32493 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐𝑗) = 𝑁)
239 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
240 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → (𝑐𝑗) = (𝑐‘1))
241 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 2 → (𝑐𝑗) = (𝑐‘2))
242142nncnd 11919 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐𝐴) → (𝑐‘0) ∈ ℂ)
243242ad4antr 728 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) ∈ ℂ)
244169nncnd 11919 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐𝐴) → (𝑐‘1) ∈ ℂ)
245244ad4antr 728 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) ∈ ℂ)
24635a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐𝐴) → 2 ∈ (0..^3))
247140, 246ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐𝐴) → (𝑐‘2) ∈ ℕ)
248247nncnd 11919 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐𝐴) → (𝑐‘2) ∈ ℂ)
249248ad4antr 728 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) ∈ ℂ)
250243, 245, 2493jca 1126 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
25120, 27, 333pm3.2i 1337 . . . . . . . . . . . . . . . . 17 (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V)
252251a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
253 0ne1 11974 . . . . . . . . . . . . . . . . 17 0 ≠ 1
254253a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 1)
255 0ne2 12110 . . . . . . . . . . . . . . . . 17 0 ≠ 2
256255a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 2)
257 1ne2 12111 . . . . . . . . . . . . . . . . 17 1 ≠ 2
258257a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 1 ≠ 2)
259239, 240, 241, 250, 252, 254, 256, 258sumtp 15389 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑐𝑗) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
260233, 238, 2593eqtr3rd 2787 . . . . . . . . . . . . . 14 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁)
261243, 245addcld 10925 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) ∈ ℂ)
262100ad5antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℂ)
263261, 249, 262addrsub 11322 . . . . . . . . . . . . . 14 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁 ↔ (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1)))))
264260, 263mpbid 231 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1))))
265232sumeq1d 15341 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑛𝑗))
26618ad4ant13 747 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
267266ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
268234, 235, 236, 267reprsum 32493 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛𝑗) = 𝑁)
269 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 0 → (𝑛𝑗) = (𝑛‘0))
270 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → (𝑛𝑗) = (𝑛‘1))
271 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 2 → (𝑛𝑗) = (𝑛‘2))
27225nncnd 11919 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℂ)
273272adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → (𝑛‘0) ∈ ℂ)
274273ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘0) ∈ ℂ)
27531nncnd 11919 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℂ)
276275adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → (𝑛‘1) ∈ ℂ)
277276ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘1) ∈ ℂ)
27837nncnd 11919 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℂ)
279278adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → (𝑛‘2) ∈ ℂ)
280279ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) ∈ ℂ)
281274, 277, 2803jca 1126 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) ∈ ℂ ∧ (𝑛‘1) ∈ ℂ ∧ (𝑛‘2) ∈ ℂ))
282269, 270, 271, 281, 252, 254, 256, 258sumtp 15389 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑛𝑗) = (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)))
283265, 268, 2823eqtr3rd 2787 . . . . . . . . . . . . . 14 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁)
284274, 277addcld 10925 . . . . . . . . . . . . . . 15 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) + (𝑛‘1)) ∈ ℂ)
285284, 280, 262addrsub 11322 . . . . . . . . . . . . . 14 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁 ↔ (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1)))))
286283, 285mpbid 231 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1))))
287231, 264, 2863eqtr4d 2788 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑛‘2))
288 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑖 = 2)
289288fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐𝑖) = (𝑐‘2))
290288fveq2d 6760 . . . . . . . . . . . 12 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛𝑖) = (𝑛‘2))
291287, 289, 2903eqtr4d 2788 . . . . . . . . . . 11 ((((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐𝑖) = (𝑛𝑖))
292 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ (0..^3))
293292, 22eleqtrdi 2849 . . . . . . . . . . . 12 (((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ {0, 1, 2})
294 vex 3426 . . . . . . . . . . . . 13 𝑖 ∈ V
295294eltp 4621 . . . . . . . . . . . 12 (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
296293, 295sylib 217 . . . . . . . . . . 11 (((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
297221, 227, 291, 296mpjao3dan 1429 . . . . . . . . . 10 (((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑐𝑖) = (𝑛𝑖))
298196, 198, 297eqfnfvd 6894 . . . . . . . . 9 ((((𝜑𝑐𝐴) ∧ 𝑛𝐴) ∧ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛)) → 𝑐 = 𝑛)
299298ex 412 . . . . . . . 8 (((𝜑𝑐𝐴) ∧ 𝑛𝐴) → (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) → 𝑐 = 𝑛))
300299anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑐𝐴𝑛𝐴)) → (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) → 𝑐 = 𝑛))
301300ralrimivva 3114 . . . . . 6 (𝜑 → ∀𝑐𝐴𝑛𝐴 (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) → 𝑐 = 𝑛))
302 dff1o6 7128 . . . . . . 7 ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩):𝐴1-1-onto→ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) ↔ ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) Fn 𝐴 ∧ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) = ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) ∧ ∀𝑐𝐴𝑛𝐴 (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) → 𝑐 = 𝑛)))
303302biimpri 227 . . . . . 6 (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) Fn 𝐴 ∧ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) = ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩) ∧ ∀𝑐𝐴𝑛𝐴 (((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑐) = ((𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)‘𝑛) → 𝑐 = 𝑛)) → (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩):𝐴1-1-onto→ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩))
304193, 194, 301, 303syl3anc 1369 . . . . 5 (𝜑 → (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩):𝐴1-1-onto→ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩))
305181sselda 3917 . . . . . . . 8 ((𝜑𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)) → 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁)))
306305, 124syldan 590 . . . . . . 7 ((𝜑𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)) → (Λ‘(1st𝑢)) ∈ ℝ)
307305, 128syldan 590 . . . . . . 7 ((𝜑𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)) → (Λ‘(2nd𝑢)) ∈ ℝ)
308306, 307remulcld 10936 . . . . . 6 ((𝜑𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)) → ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) ∈ ℝ)
309308recnd 10934 . . . . 5 ((𝜑𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)) → ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) ∈ ℂ)
310189, 10, 304, 210, 309fsumf1o 15363 . . . 4 (𝜑 → Σ𝑢 ∈ ran (𝑑𝐴 ↦ ⟨(𝑑‘0), (𝑑‘1)⟩)((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) = Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))))
31175recnd 10934 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℂ)
31269recnd 10934 . . . . . 6 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℂ)
31353, 311, 312fsummulc1 15425 . . . . 5 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})((Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))
31447a1i 11 . . . . . . 7 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (1...𝑁) ∈ Fin)
31574adantrl 712 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑗) ∈ ℝ)
316315anassrs 467 . . . . . . . 8 (((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
317316recnd 10934 . . . . . . 7 (((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℂ)
318314, 312, 317fsummulc2 15424 . . . . . 6 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → ((Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) = Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗)))
319318sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})((Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗)))
320 vex 3426 . . . . . . . . 9 𝑗 ∈ V
321294, 320op1std 7814 . . . . . . . 8 (𝑢 = ⟨𝑖, 𝑗⟩ → (1st𝑢) = 𝑖)
322321fveq2d 6760 . . . . . . 7 (𝑢 = ⟨𝑖, 𝑗⟩ → (Λ‘(1st𝑢)) = (Λ‘𝑖))
323294, 320op2ndd 7815 . . . . . . . 8 (𝑢 = ⟨𝑖, 𝑗⟩ → (2nd𝑢) = 𝑗)
324323fveq2d 6760 . . . . . . 7 (𝑢 = ⟨𝑖, 𝑗⟩ → (Λ‘(2nd𝑢)) = (Λ‘𝑗))
325322, 324oveq12d 7273 . . . . . 6 (𝑢 = ⟨𝑖, 𝑗⟩ → ((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) = ((Λ‘𝑖) · (Λ‘𝑗)))
32669adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑖) ∈ ℝ)
327326, 315remulcld 10936 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈ ℝ)
328327recnd 10934 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈ ℂ)
329325, 53, 71, 328fsumxp 15412 . . . . 5 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗)) = Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))))
330313, 319, 3293eqtrrd 2783 . . . 4 (𝜑 → Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) × (1...𝑁))((Λ‘(1st𝑢)) · (Λ‘(2nd𝑢))) = (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))
331182, 310, 3303brtr3d 5101 . . 3 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ≤ (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))
33245, 76, 43, 116, 331lemul2ad 11845 . 2 (𝜑 → ((log‘𝑁) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
33341, 46, 77, 113, 332letrd 11062 1 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  {csn 4558  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  ..^cfzo 13311  Σcsu 15325  cdvds 15891  cprime 16304  logclog 25615  Λcvma 26146  reprcrepr 32488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152  df-repr 32489
This theorem is referenced by:  hgt750leme  32538
  Copyright terms: Public domain W3C validator