Step | Hyp | Ref
| Expression |
1 | | hgt750leme.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnnn0d 12293 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
3 | | 3nn0 12251 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ∈
ℕ0) |
5 | | ssidd 3944 |
. . . . 5
⊢ (𝜑 → ℕ ⊆
ℕ) |
6 | 2, 4, 5 | reprfi2 32603 |
. . . 4
⊢ (𝜑 →
(ℕ(repr‘3)𝑁)
∈ Fin) |
7 | | hgt750lemb.a |
. . . . 5
⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ)} |
8 | 7 | ssrab3 4015 |
. . . 4
⊢ 𝐴 ⊆
(ℕ(repr‘3)𝑁) |
9 | | ssfi 8956 |
. . . 4
⊢
(((ℕ(repr‘3)𝑁) ∈ Fin ∧ 𝐴 ⊆ (ℕ(repr‘3)𝑁)) → 𝐴 ∈ Fin) |
10 | 6, 8, 9 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
11 | | vmaf 26268 |
. . . . . 6
⊢
Λ:ℕ⟶ℝ |
12 | 11 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) →
Λ:ℕ⟶ℝ) |
13 | | ssidd 3944 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ℕ ⊆
ℕ) |
14 | 1 | nnzd 12425 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈ ℤ) |
16 | 3 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 3 ∈
ℕ0) |
17 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
18 | 8, 17 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
19 | 13, 15, 16, 18 | reprf 32592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛:(0..^3)⟶ℕ) |
20 | | c0ex 10969 |
. . . . . . . . 9
⊢ 0 ∈
V |
21 | 20 | tpid1 4704 |
. . . . . . . 8
⊢ 0 ∈
{0, 1, 2} |
22 | | fzo0to3tp 13473 |
. . . . . . . 8
⊢ (0..^3) =
{0, 1, 2} |
23 | 21, 22 | eleqtrri 2838 |
. . . . . . 7
⊢ 0 ∈
(0..^3) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ∈ (0..^3)) |
25 | 19, 24 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℕ) |
26 | 12, 25 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ) |
27 | | 1ex 10971 |
. . . . . . . . . 10
⊢ 1 ∈
V |
28 | 27 | tpid2 4706 |
. . . . . . . . 9
⊢ 1 ∈
{0, 1, 2} |
29 | 28, 22 | eleqtrri 2838 |
. . . . . . . 8
⊢ 1 ∈
(0..^3) |
30 | 29 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 1 ∈ (0..^3)) |
31 | 19, 30 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℕ) |
32 | 12, 31 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ) |
33 | | 2ex 12050 |
. . . . . . . . . 10
⊢ 2 ∈
V |
34 | 33 | tpid3 4709 |
. . . . . . . . 9
⊢ 2 ∈
{0, 1, 2} |
35 | 34, 22 | eleqtrri 2838 |
. . . . . . . 8
⊢ 2 ∈
(0..^3) |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 2 ∈ (0..^3)) |
37 | 19, 36 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℕ) |
38 | 12, 37 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ) |
39 | 32, 38 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))) ∈ ℝ) |
40 | 26, 39 | remulcld 11005 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈
ℝ) |
41 | 10, 40 | fsumrecl 15446 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
42 | 1 | nnrpd 12770 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
43 | 42 | relogcld 25778 |
. . 3
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) |
44 | 26, 32 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) ∈ ℝ) |
45 | 10, 44 | fsumrecl 15446 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ∈
ℝ) |
46 | 43, 45 | remulcld 11005 |
. 2
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ∈
ℝ) |
47 | | fzfi 13692 |
. . . . . . . 8
⊢
(1...𝑁) ∈
Fin |
48 | | diffi 8962 |
. . . . . . . 8
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∖
ℙ) ∈ Fin) |
49 | 47, 48 | ax-mp 5 |
. . . . . . 7
⊢
((1...𝑁) ∖
ℙ) ∈ Fin |
50 | | snfi 8834 |
. . . . . . 7
⊢ {2}
∈ Fin |
51 | | unfi 8955 |
. . . . . . 7
⊢
((((1...𝑁) ∖
ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈
Fin) |
52 | 49, 50, 51 | mp2an 689 |
. . . . . 6
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) ∈ Fin |
53 | 52 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈
Fin) |
54 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
Λ:ℕ⟶ℝ) |
55 | | difss 4066 |
. . . . . . . . . 10
⊢
((1...𝑁) ∖
ℙ) ⊆ (1...𝑁) |
56 | 55 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ (1...𝑁)) |
57 | | 2nn 12046 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
58 | 57 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℕ) |
59 | | hgt750lemb.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝑁) |
60 | | elfz1b 13325 |
. . . . . . . . . . . 12
⊢ (2 ∈
(1...𝑁) ↔ (2 ∈
ℕ ∧ 𝑁 ∈
ℕ ∧ 2 ≤ 𝑁)) |
61 | 60 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ ∧ 2 ≤ 𝑁) → 2 ∈ (1...𝑁)) |
62 | 58, 1, 59, 61 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈ (1...𝑁)) |
63 | 62 | snssd 4742 |
. . . . . . . . 9
⊢ (𝜑 → {2} ⊆ (1...𝑁)) |
64 | 56, 63 | unssd 4120 |
. . . . . . . 8
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆
(1...𝑁)) |
65 | | fz1ssnn 13287 |
. . . . . . . . 9
⊢
(1...𝑁) ⊆
ℕ |
66 | 65 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
67 | 64, 66 | sstrd 3931 |
. . . . . . 7
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆
ℕ) |
68 | 67 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈
ℕ) |
69 | 54, 68 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(Λ‘𝑖) ∈
ℝ) |
70 | 53, 69 | fsumrecl 15446 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
∈ ℝ) |
71 | | fzfid 13693 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
72 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) →
Λ:ℕ⟶ℝ) |
73 | 66 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
74 | 72, 73 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ) |
75 | 71, 74 | fsumrecl 15446 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ) |
76 | 70, 75 | remulcld 11005 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) ∈ ℝ) |
77 | 43, 76 | remulcld 11005 |
. 2
⊢ (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) ∈ ℝ) |
78 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈ ℕ) |
79 | 78 | nnrpd 12770 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈
ℝ+) |
80 | | relogcl 25731 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℝ) |
81 | 79, 80 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘𝑁) ∈ ℝ) |
82 | 32, 81 | remulcld 11005 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(log‘𝑁)) ∈
ℝ) |
83 | 26, 82 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁))) ∈
ℝ) |
84 | | vmage0 26270 |
. . . . . 6
⊢ ((𝑛‘0) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘0))) |
85 | 25, 84 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ≤ (Λ‘(𝑛‘0))) |
86 | | vmage0 26270 |
. . . . . . 7
⊢ ((𝑛‘1) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘1))) |
87 | 31, 86 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ≤ (Λ‘(𝑛‘1))) |
88 | 37 | nnrpd 12770 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈
ℝ+) |
89 | 88 | relogcld 25778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘(𝑛‘2)) ∈ ℝ) |
90 | | vmalelog 26353 |
. . . . . . . 8
⊢ ((𝑛‘2) ∈ ℕ →
(Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2))) |
91 | 37, 90 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2))) |
92 | 13, 15, 16, 18, 36 | reprle 32594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ≤ 𝑁) |
93 | | logleb 25758 |
. . . . . . . . 9
⊢ (((𝑛‘2) ∈
ℝ+ ∧ 𝑁
∈ ℝ+) → ((𝑛‘2) ≤ 𝑁 ↔ (log‘(𝑛‘2)) ≤ (log‘𝑁))) |
94 | 93 | biimpa 477 |
. . . . . . . 8
⊢ ((((𝑛‘2) ∈
ℝ+ ∧ 𝑁
∈ ℝ+) ∧ (𝑛‘2) ≤ 𝑁) → (log‘(𝑛‘2)) ≤ (log‘𝑁)) |
95 | 88, 79, 92, 94 | syl21anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘(𝑛‘2)) ≤ (log‘𝑁)) |
96 | 38, 89, 81, 91, 95 | letrd 11132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘𝑁)) |
97 | 38, 81, 32, 87, 96 | lemul2ad 11915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))) ≤ ((Λ‘(𝑛‘1)) ·
(log‘𝑁))) |
98 | 39, 82, 26, 85, 97 | lemul2ad 11915 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
99 | 10, 40, 83, 98 | fsumle 15511 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
100 | 1 | nncnd 11989 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
101 | 1 | nnne0d 12023 |
. . . . . 6
⊢ (𝜑 → 𝑁 ≠ 0) |
102 | 100, 101 | logcld 25726 |
. . . . 5
⊢ (𝜑 → (log‘𝑁) ∈
ℂ) |
103 | 44 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) ∈ ℂ) |
104 | 10, 102, 103 | fsummulc2 15496 |
. . . 4
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = Σ𝑛 ∈ 𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))))) |
105 | 102 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘𝑁) ∈ ℂ) |
106 | 105, 103 | mulcomd 10996 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = (((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) · (log‘𝑁))) |
107 | 26 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ) |
108 | 32 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ) |
109 | 107, 108,
105 | mulassd 10998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) · (log‘𝑁)) = ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁)))) |
110 | 106, 109 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁)))) |
111 | 110 | sumeq2dv 15415 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
112 | 104, 111 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁))) =
((log‘𝑁) ·
Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))))) |
113 | 99, 112 | breqtrd 5100 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))))) |
114 | 1 | nnred 11988 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
115 | 1 | nnge1d 12021 |
. . . 4
⊢ (𝜑 → 1 ≤ 𝑁) |
116 | 114, 115 | logge0d 25785 |
. . 3
⊢ (𝜑 → 0 ≤ (log‘𝑁)) |
117 | | xpfi 9085 |
. . . . . 6
⊢
(((((1...𝑁) ∖
ℙ) ∪ {2}) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) ∈
Fin) |
118 | 53, 71, 117 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁)) ∈
Fin) |
119 | 11 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
Λ:ℕ⟶ℝ) |
120 | 67 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(((1...𝑁) ∖ ℙ)
∪ {2}) ⊆ ℕ) |
121 | | xp1st 7863 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) →
(1st ‘𝑢)
∈ (((1...𝑁) ∖
ℙ) ∪ {2})) |
122 | 121 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(1st ‘𝑢)
∈ (((1...𝑁) ∖
ℙ) ∪ {2})) |
123 | 120, 122 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(1st ‘𝑢)
∈ ℕ) |
124 | 119, 123 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(Λ‘(1st ‘𝑢)) ∈ ℝ) |
125 | | xp2nd 7864 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) →
(2nd ‘𝑢)
∈ (1...𝑁)) |
126 | 125 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(2nd ‘𝑢)
∈ (1...𝑁)) |
127 | 65, 126 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(2nd ‘𝑢)
∈ ℕ) |
128 | 119, 127 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(Λ‘(2nd ‘𝑢)) ∈ ℝ) |
129 | 124, 128 | remulcld 11005 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℝ) |
130 | | vmage0 26270 |
. . . . . . 7
⊢
((1st ‘𝑢) ∈ ℕ → 0 ≤
(Λ‘(1st ‘𝑢))) |
131 | 123, 130 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
(Λ‘(1st ‘𝑢))) |
132 | | vmage0 26270 |
. . . . . . 7
⊢
((2nd ‘𝑢) ∈ ℕ → 0 ≤
(Λ‘(2nd ‘𝑢))) |
133 | 127, 132 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
(Λ‘(2nd ‘𝑢))) |
134 | 124, 128,
131, 133 | mulge0d 11552 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢)))) |
135 | | ssidd 3944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ℕ ⊆
ℕ) |
136 | 14 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℤ) |
137 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 3 ∈
ℕ0) |
138 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
139 | 8, 138 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ (ℕ(repr‘3)𝑁)) |
140 | 135, 136,
137, 139 | reprf 32592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐:(0..^3)⟶ℕ) |
141 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ∈ (0..^3)) |
142 | 140, 141 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ℕ) |
143 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℕ) |
144 | 135, 136,
137, 139, 141 | reprle 32594 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ≤ 𝑁) |
145 | | elfz1b 13325 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘0) ∈ (1...𝑁) ↔ ((𝑐‘0) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘0) ≤ 𝑁)) |
146 | 145 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (((𝑐‘0) ∈ ℕ ∧
𝑁 ∈ ℕ ∧
(𝑐‘0) ≤ 𝑁) → (𝑐‘0) ∈ (1...𝑁)) |
147 | 142, 143,
144, 146 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ (1...𝑁)) |
148 | 7 | rabeq2i 3422 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐴 ↔ (𝑐 ∈ (ℕ(repr‘3)𝑁) ∧ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ))) |
149 | 148 | simprbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐴 → ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)) |
150 | | hgt750leme.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
151 | 150 | oddprm2 32635 |
. . . . . . . . . . . . . 14
⊢ (ℙ
∖ {2}) = (𝑂 ∩
ℙ) |
152 | 151 | eleq2i 2830 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘0) ∈ (ℙ
∖ {2}) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)) |
153 | 149, 152 | sylnibr 329 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝐴 → ¬ (𝑐‘0) ∈ (ℙ ∖
{2})) |
154 | 138, 153 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ¬ (𝑐‘0) ∈ (ℙ ∖
{2})) |
155 | 147, 154 | jca 512 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑐‘0) ∈ (1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ ∖
{2}))) |
156 | | eldif 3897 |
. . . . . . . . . 10
⊢ ((𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2}))
↔ ((𝑐‘0) ∈
(1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ
∖ {2}))) |
157 | 155, 156 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2}))) |
158 | | uncom 4087 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) = ({2} ∪ ((1...𝑁) ∖ ℙ)) |
159 | | undif3 4224 |
. . . . . . . . . . . . 13
⊢ ({2}
∪ ((1...𝑁) ∖
ℙ)) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) |
160 | 158, 159 | eqtri 2766 |
. . . . . . . . . . . 12
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) |
161 | | ssequn1 4114 |
. . . . . . . . . . . . . 14
⊢ ({2}
⊆ (1...𝑁) ↔ ({2}
∪ (1...𝑁)) = (1...𝑁)) |
162 | 63, 161 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({2} ∪ (1...𝑁)) = (1...𝑁)) |
163 | 162 | difeq1d 4056 |
. . . . . . . . . . . 12
⊢ (𝜑 → (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) = ((1...𝑁) ∖
(ℙ ∖ {2}))) |
164 | 160, 163 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) = ((1...𝑁) ∖ (ℙ ∖
{2}))) |
165 | 164 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2})))) |
166 | 165 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2})))) |
167 | 157, 166 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪
{2})) |
168 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (0..^3)) |
169 | 140, 168 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℕ) |
170 | 135, 136,
137, 139, 168 | reprle 32594 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ≤ 𝑁) |
171 | | elfz1b 13325 |
. . . . . . . . . 10
⊢ ((𝑐‘1) ∈ (1...𝑁) ↔ ((𝑐‘1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘1) ≤ 𝑁)) |
172 | 171 | biimpri 227 |
. . . . . . . . 9
⊢ (((𝑐‘1) ∈ ℕ ∧
𝑁 ∈ ℕ ∧
(𝑐‘1) ≤ 𝑁) → (𝑐‘1) ∈ (1...𝑁)) |
173 | 169, 143,
170, 172 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ (1...𝑁)) |
174 | 167, 173 | opelxpd 5627 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
175 | 174 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
176 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0)) |
177 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → (𝑑‘1) = (𝑐‘1)) |
178 | 176, 177 | opeq12d 4812 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → 〈(𝑑‘0), (𝑑‘1)〉 = 〈(𝑐‘0), (𝑐‘1)〉) |
179 | 178 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = (𝑐 ∈ 𝐴 ↦ 〈(𝑐‘0), (𝑐‘1)〉) |
180 | 179 | rnmptss 6996 |
. . . . . 6
⊢
(∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) → ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
181 | 175, 180 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
182 | 118, 129,
134, 181 | fsumless 15508 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) ≤ Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st ‘𝑢)) ·
(Λ‘(2nd ‘𝑢)))) |
183 | | fvex 6787 |
. . . . . . . 8
⊢ (𝑛‘0) ∈
V |
184 | | fvex 6787 |
. . . . . . . 8
⊢ (𝑛‘1) ∈
V |
185 | 183, 184 | op1std 7841 |
. . . . . . 7
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 → (1st
‘𝑢) = (𝑛‘0)) |
186 | 185 | fveq2d 6778 |
. . . . . 6
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
(Λ‘(1st ‘𝑢)) = (Λ‘(𝑛‘0))) |
187 | 183, 184 | op2ndd 7842 |
. . . . . . 7
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 → (2nd
‘𝑢) = (𝑛‘1)) |
188 | 187 | fveq2d 6778 |
. . . . . 6
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
(Λ‘(2nd ‘𝑢)) = (Λ‘(𝑛‘1))) |
189 | 186, 188 | oveq12d 7293 |
. . . . 5
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) =
((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) |
190 | | opex 5379 |
. . . . . . . 8
⊢
〈(𝑐‘0),
(𝑐‘1)〉 ∈
V |
191 | 190 | rgenw 3076 |
. . . . . . 7
⊢
∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ V |
192 | 179 | fnmpt 6573 |
. . . . . . 7
⊢
(∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ V → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴) |
193 | 191, 192 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴) |
194 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
195 | 140 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐:(0..^3)⟶ℕ) |
196 | 195 | ffnd 6601 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐 Fn (0..^3)) |
197 | 19 | ad4ant13 748 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛:(0..^3)⟶ℕ) |
198 | 197 | ffnd 6601 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛 Fn (0..^3)) |
199 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) |
200 | 179 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = (𝑐 ∈ 𝐴 ↦ 〈(𝑐‘0), (𝑐‘1)〉)) |
201 | 190 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 〈(𝑐‘0), (𝑐‘1)〉 ∈ V) |
202 | 200, 201 | fvmpt2d 6888 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
203 | 202 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
204 | 203 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
205 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑛 → (𝑐‘0) = (𝑛‘0)) |
206 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑛 → (𝑐‘1) = (𝑛‘1)) |
207 | 205, 206 | opeq12d 4812 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑛 → 〈(𝑐‘0), (𝑐‘1)〉 = 〈(𝑛‘0), (𝑛‘1)〉) |
208 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈(𝑛‘0),
(𝑛‘1)〉 ∈
V |
209 | 208 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 〈(𝑛‘0), (𝑛‘1)〉 ∈ V) |
210 | 179, 207,
17, 209 | fvmptd3 6898 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
211 | 210 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
212 | 211 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
213 | 199, 204,
212 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 〈(𝑐‘0), (𝑐‘1)〉 = 〈(𝑛‘0), (𝑛‘1)〉) |
214 | 183, 184 | opth2 5395 |
. . . . . . . . . . . . . . 15
⊢
(〈(𝑐‘0),
(𝑐‘1)〉 =
〈(𝑛‘0), (𝑛‘1)〉 ↔ ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1))) |
215 | 213, 214 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1))) |
216 | 215 | simpld 495 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → (𝑐‘0) = (𝑛‘0)) |
217 | 216 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘0) = (𝑛‘0)) |
218 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → 𝑖 = 0) |
219 | 218 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘𝑖) = (𝑐‘0)) |
220 | 218 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑛‘𝑖) = (𝑛‘0)) |
221 | 217, 219,
220 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
222 | 215 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → (𝑐‘1) = (𝑛‘1)) |
223 | 222 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘1) = (𝑛‘1)) |
224 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → 𝑖 = 1) |
225 | 224 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘𝑖) = (𝑐‘1)) |
226 | 224 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑛‘𝑖) = (𝑛‘1)) |
227 | 223, 225,
226 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
228 | 216 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) = (𝑛‘0)) |
229 | 222 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) = (𝑛‘1)) |
230 | 228, 229 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) = ((𝑛‘0) + (𝑛‘1))) |
231 | 230 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑁 − ((𝑐‘0) + (𝑐‘1))) = (𝑁 − ((𝑛‘0) + (𝑛‘1)))) |
232 | 22 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0..^3) = {0, 1,
2}) |
233 | 232 | sumeq1d 15413 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐‘𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑐‘𝑗)) |
234 | | ssidd 3944 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ℕ ⊆
ℕ) |
235 | 136 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℤ) |
236 | 3 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 3 ∈
ℕ0) |
237 | 139 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑐 ∈ (ℕ(repr‘3)𝑁)) |
238 | 234, 235,
236, 237 | reprsum 32593 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐‘𝑗) = 𝑁) |
239 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑐‘𝑗) = (𝑐‘0)) |
240 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → (𝑐‘𝑗) = (𝑐‘1)) |
241 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 2 → (𝑐‘𝑗) = (𝑐‘2)) |
242 | 142 | nncnd 11989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ℂ) |
243 | 242 | ad4antr 729 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) ∈ ℂ) |
244 | 169 | nncnd 11989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℂ) |
245 | 244 | ad4antr 729 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) ∈ ℂ) |
246 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 2 ∈ (0..^3)) |
247 | 140, 246 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘2) ∈ ℕ) |
248 | 247 | nncnd 11989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘2) ∈ ℂ) |
249 | 248 | ad4antr 729 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) ∈ ℂ) |
250 | 243, 245,
249 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧
(𝑐‘2) ∈
ℂ)) |
251 | 20, 27, 33 | 3pm3.2i 1338 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V ∧ 1 ∈ V ∧ 2 ∈ V) |
252 | 251 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0 ∈ V ∧ 1 ∈ V
∧ 2 ∈ V)) |
253 | | 0ne1 12044 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
1 |
254 | 253 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 1) |
255 | | 0ne2 12180 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
2 |
256 | 255 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 2) |
257 | | 1ne2 12181 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
2 |
258 | 257 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 1 ≠ 2) |
259 | 239, 240,
241, 250, 252, 254, 256, 258 | sumtp 15461 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑐‘𝑗) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))) |
260 | 233, 238,
259 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁) |
261 | 243, 245 | addcld 10994 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) ∈ ℂ) |
262 | 100 | ad5antr 731 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℂ) |
263 | 261, 249,
262 | addrsub 11392 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁 ↔ (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1))))) |
264 | 260, 263 | mpbid 231 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1)))) |
265 | 232 | sumeq1d 15413 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛‘𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑛‘𝑗)) |
266 | 18 | ad4ant13 748 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
267 | 266 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
268 | 234, 235,
236, 267 | reprsum 32593 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛‘𝑗) = 𝑁) |
269 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑛‘𝑗) = (𝑛‘0)) |
270 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → (𝑛‘𝑗) = (𝑛‘1)) |
271 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 2 → (𝑛‘𝑗) = (𝑛‘2)) |
272 | 25 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℂ) |
273 | 272 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℂ) |
274 | 273 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘0) ∈ ℂ) |
275 | 31 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℂ) |
276 | 275 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℂ) |
277 | 276 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘1) ∈ ℂ) |
278 | 37 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℂ) |
279 | 278 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℂ) |
280 | 279 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) ∈ ℂ) |
281 | 274, 277,
280 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) ∈ ℂ ∧ (𝑛‘1) ∈ ℂ ∧
(𝑛‘2) ∈
ℂ)) |
282 | 269, 270,
271, 281, 252, 254, 256, 258 | sumtp 15461 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑛‘𝑗) = (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2))) |
283 | 265, 268,
282 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁) |
284 | 274, 277 | addcld 10994 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) + (𝑛‘1)) ∈ ℂ) |
285 | 284, 280,
262 | addrsub 11392 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁 ↔ (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1))))) |
286 | 283, 285 | mpbid 231 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1)))) |
287 | 231, 264,
286 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑛‘2)) |
288 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑖 = 2) |
289 | 288 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘𝑖) = (𝑐‘2)) |
290 | 288 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘𝑖) = (𝑛‘2)) |
291 | 287, 289,
290 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
292 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ (0..^3)) |
293 | 292, 22 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ {0, 1, 2}) |
294 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑖 ∈ V |
295 | 294 | eltp 4624 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
296 | 293, 295 | sylib 217 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
297 | 221, 227,
291, 296 | mpjao3dan 1430 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
298 | 196, 198,
297 | eqfnfvd 6912 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐 = 𝑛) |
299 | 298 | ex 413 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
300 | 299 | anasss 467 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
301 | 300 | ralrimivva 3123 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
302 | | dff1o6 7147 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ↔ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴 ∧ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ∧ ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛))) |
303 | 302 | biimpri 227 |
. . . . . 6
⊢ (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴 ∧ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ∧ ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
304 | 193, 194,
301, 303 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
305 | 181 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) → 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) |
306 | 305, 124 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
(Λ‘(1st ‘𝑢)) ∈ ℝ) |
307 | 305, 128 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
(Λ‘(2nd ‘𝑢)) ∈ ℝ) |
308 | 306, 307 | remulcld 11005 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℝ) |
309 | 308 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℂ) |
310 | 189, 10, 304, 210, 309 | fsumf1o 15435 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) = Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) |
311 | 75 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℂ) |
312 | 69 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(Λ‘𝑖) ∈
ℂ) |
313 | 53, 311, 312 | fsummulc1 15497 |
. . . . 5
⊢ (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
314 | 47 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(1...𝑁) ∈
Fin) |
315 | 74 | adantrl 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑗) ∈
ℝ) |
316 | 315 | anassrs 468 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ) |
317 | 316 | recnd 11003 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℂ) |
318 | 314, 312,
317 | fsummulc2 15496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗))) |
319 | 318 | sumeq2dv 15415 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗))) |
320 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑗 ∈ V |
321 | 294, 320 | op1std 7841 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (1st ‘𝑢) = 𝑖) |
322 | 321 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (Λ‘(1st
‘𝑢)) =
(Λ‘𝑖)) |
323 | 294, 320 | op2ndd 7842 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (2nd ‘𝑢) = 𝑗) |
324 | 323 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (Λ‘(2nd
‘𝑢)) =
(Λ‘𝑗)) |
325 | 322, 324 | oveq12d 7293 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) =
((Λ‘𝑖)
· (Λ‘𝑗))) |
326 | 69 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑖) ∈
ℝ) |
327 | 326, 315 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈
ℝ) |
328 | 327 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈
ℂ) |
329 | 325, 53, 71, 328 | fsumxp 15484 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗)) = Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢)))) |
330 | 313, 319,
329 | 3eqtrrd 2783 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) = (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
331 | 182, 310,
330 | 3brtr3d 5105 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ≤ (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
332 | 45, 76, 43, 116, 331 | lemul2ad 11915 |
. 2
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ≤
((log‘𝑁) ·
(Σ𝑖 ∈
(((1...𝑁) ∖ ℙ)
∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) |
333 | 41, 46, 77, 113, 332 | letrd 11132 |
1
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)))) |