Step | Hyp | Ref
| Expression |
1 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
2 | | dvnmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
3 | | nn0uz 12945 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleqtrdi 2854 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
5 | | eluzfz2 13592 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
7 | | eleq1 2832 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁))) |
8 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁)) |
9 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
10 | 9 | sumeq1d 15748 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
11 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
12 | | fvoveq1 7471 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝐷‘(𝑛 − 𝑘)) = (𝐷‘(𝑁 − 𝑘))) |
13 | 12 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → ((𝐷‘(𝑛 − 𝑘))‘𝑥) = ((𝐷‘(𝑁 − 𝑘))‘𝑥)) |
14 | 13 | oveq2d 7464 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))) |
15 | 11, 14 | oveq12d 7466 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = ((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
16 | 15 | sumeq2sdv 15751 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
17 | 10, 16 | eqtrd 2780 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
18 | 17 | mpteq2dv 5268 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |
19 | 8, 18 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
20 | 19 | imbi2d 340 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
21 | 7, 20 | imbi12d 344 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) ↔ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))))) |
22 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑚 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0)) |
23 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 0) |
24 | 23 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...0)) |
25 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → 𝑚 = 0) |
26 | 25 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝑚C𝑘) = (0C𝑘)) |
27 | 25 | fvoveq1d 7470 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(0 − 𝑘))) |
28 | 27 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(0 − 𝑘))‘𝑥)) |
29 | 28 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
30 | 26, 29 | oveq12d 7466 |
. . . . . . . . 9
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
31 | 24, 30 | sumeq12rdv 15755 |
. . . . . . . 8
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
32 | 31 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
33 | 22, 32 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑚 = 0 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
34 | 33 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))))) |
35 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) |
36 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑖) |
37 | 36 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑖)) |
38 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → 𝑚 = 𝑖) |
39 | 38 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑚C𝑘) = (𝑖C𝑘)) |
40 | 38 | fvoveq1d 7470 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
41 | 40 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − 𝑘))‘𝑥)) |
42 | 41 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
43 | 39, 42 | oveq12d 7466 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
44 | 37, 43 | sumeq12rdv 15755 |
. . . . . . . 8
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
45 | 44 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
46 | 35, 45 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑚 = 𝑖 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
47 | 46 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑖 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))))) |
48 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1))) |
49 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → 𝑚 = (𝑖 + 1)) |
50 | 49 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...(𝑖 + 1))) |
51 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑚 = (𝑖 + 1)) |
52 | 51 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑚C𝑘) = ((𝑖 + 1)C𝑘)) |
53 | 51 | fvoveq1d 7470 |
. . . . . . . . . . . 12
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
54 | 53 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
55 | 54 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
56 | 52, 55 | oveq12d 7466 |
. . . . . . . . 9
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
57 | 50, 56 | sumeq12rdv 15755 |
. . . . . . . 8
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
58 | 57 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
59 | 48, 58 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑚 = (𝑖 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
60 | 59 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = (𝑖 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
61 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛)) |
62 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑛) |
63 | 62 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑛)) |
64 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → 𝑚 = 𝑛) |
65 | 64 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝑚C𝑘) = (𝑛C𝑘)) |
66 | 64 | fvoveq1d 7470 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑛 − 𝑘))) |
67 | 66 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑛 − 𝑘))‘𝑥)) |
68 | 67 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) |
69 | 65, 68 | oveq12d 7466 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
70 | 63, 69 | sumeq12rdv 15755 |
. . . . . . . 8
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
71 | 70 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) |
72 | 61, 71 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
73 | 72 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))))) |
74 | | dvnmul.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
75 | | recnprss 25959 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
77 | | dvnmul.a |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
78 | | dvnmul.cc |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
79 | 77, 78 | mulcld 11310 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
80 | | restsspw 17491 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 |
81 | | dvnmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
82 | 80, 81 | sselid 4006 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
83 | | elpwi 4629 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) |
84 | 82, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
85 | | cnex 11265 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
86 | 85 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
V) |
87 | 79, 84, 86, 74 | mptelpm 45083 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) |
88 | | dvn0 25980 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
89 | 76, 87, 88 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
90 | | 0z 12650 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
91 | | fzsn 13626 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → (0...0) = {0}) |
92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0...0) =
{0} |
93 | 92 | sumeq1i 15745 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...0)((0C𝑘) ·
(((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
94 | 93 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
95 | | nfcvd 2909 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Ⅎ𝑘(𝐴 · 𝐵)) |
96 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
97 | | oveq2 7456 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
98 | | 0nn0 12568 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
99 | | bcn0 14359 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
100 | 98, 99 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (0C0) =
1 |
101 | 100 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C0) =
1) |
102 | 97, 101 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (0C𝑘) = 1) |
103 | 102 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (0C𝑘) = 1) |
104 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐶‘𝑘) = (𝐶‘0)) |
105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = (𝐶‘0)) |
106 | | dvnmul.c |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
107 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑛)) |
108 | 107 | cbvmptv 5279 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
109 | 106, 108 | eqtri 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
110 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0)) |
111 | | eluzfz1 13591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
112 | 4, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
113 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) ∈ V) |
114 | 109, 110,
112, 113 | fvmptd3 7052 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
116 | 105, 115 | eqtrd 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘0)) |
117 | | dvnmulf |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐴) |
118 | 77, 84, 86, 74 | mptelpm 45083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) |
119 | 117, 118 | eqeltrid 2848 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
120 | | dvn0 25980 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 𝐹)‘0) = 𝐹) |
121 | 76, 119, 120 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
122 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
123 | 116, 122 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = 𝐹) |
124 | 123 | fveq1d 6922 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
125 | 124 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
126 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
127 | 117 | fvmpt2 7040 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝐹‘𝑥) = 𝐴) |
128 | 126, 77, 127 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = 𝐴) |
129 | 128 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐹‘𝑥) = 𝐴) |
130 | 125, 129 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = 𝐴) |
131 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 𝑘) = (0 −
0)) |
132 | | 0m0e0 12413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
− 0) = 0 |
133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 0) =
0) |
134 | 131, 133 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
135 | 134 | fveq2d 6924 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝐷‘(0 − 𝑘)) = (𝐷‘0)) |
136 | 135 | fveq1d 6922 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
137 | 136 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
138 | 137 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
139 | | dvnmul.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
140 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑛)) |
141 | 140 | cbvmptv 5279 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
142 | 139, 141 | eqtri 2768 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
143 | 142 | fveq1i 6921 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) |
144 | 143 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0)) |
145 | | eqidd 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
146 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
147 | 146 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
148 | | dvnmul.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵) |
149 | 78, 84, 86, 74 | mptelpm 45083 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (ℂ ↑pm 𝑆)) |
150 | 148, 149 | eqeltrid 2848 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
151 | | dvn0 25980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 𝐺)‘0) = 𝐺) |
152 | 76, 150, 151 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
153 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
154 | 147, 153 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = 𝐺) |
155 | 148 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
156 | | mptexg 7258 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝒫 𝑆 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
157 | 82, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
158 | 155, 157 | eqeltrd 2844 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ V) |
159 | 145, 154,
112, 158 | fvmptd 7036 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) = 𝐺) |
160 | 144, 159 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘0) = 𝐺) |
161 | 160 | fveq1d 6922 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
162 | 161 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
163 | 155, 78 | fvmpt2d 7042 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) = 𝐵) |
164 | 163 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐺‘𝑥) = 𝐵) |
165 | 138, 162,
164 | 3eqtrd 2784 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = 𝐵) |
166 | 130, 165 | oveq12d 7466 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)) = (𝐴 · 𝐵)) |
167 | 103, 166 | oveq12d 7466 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (1 · (𝐴 · 𝐵))) |
168 | 79 | mullidd 11308 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
169 | 168 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
170 | 167, 169 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
171 | | 0re 11292 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
172 | 171 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
173 | 95, 96, 170, 172, 79 | sumsnd 44926 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
174 | 94, 173 | eqtr2d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
175 | 174 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
176 | 89, 175 | eqtrd 2780 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
177 | 176 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
178 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝜑) |
179 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝑖 ∈ (0..^𝑁)) |
180 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
181 | | pm3.35 802 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
182 | 178, 180,
181 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
183 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ⊆ ℂ) |
184 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) |
185 | | elfzonn0 13761 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
186 | 185 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
187 | | dvnp1 25981 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
188 | 183, 184,
186, 187 | syl3anc 1371 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
189 | 188 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
190 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
191 | 190 | oveq2d 7464 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
192 | | eqid 2740 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
193 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
194 | 74 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
195 | 81 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
196 | | fzfid 14024 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (0...𝑖) ∈ Fin) |
197 | 185 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℕ0) |
198 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℤ) |
199 | 198 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℤ) |
200 | 197, 199 | bccld 45230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
201 | 200 | nn0cnd 12615 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
202 | 201 | adantll 713 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
203 | 202 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
204 | | simpll 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝜑) |
205 | | 0zd 12651 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℤ) |
206 | | elfzoel2 13715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) |
207 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℤ) |
208 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ 𝑘) |
209 | 208 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ 𝑘) |
210 | 199 | zred 12747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℝ) |
211 | 206 | zred 12747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℝ) |
212 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℝ) |
213 | 185 | nn0red 12614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ) |
214 | 213 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
215 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ 𝑖) |
216 | 215 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑖) |
217 | | elfzolt2 13725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 < 𝑁) |
218 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 < 𝑁) |
219 | 210, 214,
212, 216, 218 | lelttrd 11448 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 < 𝑁) |
220 | 210, 212,
219 | ltled 11438 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑁) |
221 | 205, 207,
199, 209, 220 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
222 | 221 | adantll 713 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
223 | | dvnmul.dvnf |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ) |
224 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘))) |
225 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) |
226 | 224, 225 | fvmpt2d 7042 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
227 | 226 | feq1d 6732 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ)) |
228 | 223, 227 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) |
229 | 204, 222,
228 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘):𝑋⟶ℂ) |
230 | 229 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐶‘𝑘):𝑋⟶ℂ) |
231 | | simp3 1138 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
232 | 230, 231 | ffvelcdmd 7119 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
233 | 185 | nn0zd 12665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ) |
234 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℤ) |
235 | 234, 199 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℤ) |
236 | | elfzel2 13582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℤ) |
237 | 236 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℝ) |
238 | 198 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℝ) |
239 | 237, 238 | subge0d 11880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → (0 ≤ (𝑖 − 𝑘) ↔ 𝑘 ≤ 𝑖)) |
240 | 215, 239 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑖 − 𝑘)) |
241 | 240 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑖 − 𝑘)) |
242 | 214, 210 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℝ) |
243 | 212, 210 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ∈ ℝ) |
244 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℝ) |
245 | 212, 244 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 ∈ ℝ ∧ 0 ∈
ℝ)) |
246 | | resubcl 11600 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 −
0) ∈ ℝ) |
247 | 245, 246 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) ∈ ℝ) |
248 | 214, 212,
210, 218 | ltsub1dd 11902 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 𝑘)) |
249 | 244, 210,
212, 209 | lesub2dd 11907 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
250 | 242, 243,
247, 248, 249 | ltletrd 11450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 0)) |
251 | 211 | recnd 11318 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℂ) |
252 | 251 | subid1d 11636 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝑁 − 0) = 𝑁) |
253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) = 𝑁) |
254 | 250, 253 | breqtrd 5192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < 𝑁) |
255 | 242, 212,
254 | ltled 11438 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ≤ 𝑁) |
256 | 205, 207,
235, 241, 255 | elfzd 13575 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
257 | 256 | adantll 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
258 | | ovex 7481 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 − 𝑘) ∈ V |
259 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ (𝑖 − 𝑘) ∈ (0...𝑁))) |
260 | 259 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)))) |
261 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
262 | 261 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
263 | 260, 262 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ))) |
264 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
265 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝑁) ↔ 𝑗 ∈ (0...𝑁))) |
266 | 265 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝑁)))) |
267 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑗)) |
268 | 267 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ)) |
269 | 266, 268 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ))) |
270 | | dvnmul.dvng |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) |
271 | 264, 269,
270 | chvarfv 2241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
272 | 258, 263,
271 | vtocl 3570 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
273 | 204, 257,
272 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
274 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
275 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) ∈ V) |
276 | 142, 274,
256, 275 | fvmptd3 7052 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
277 | 276 | adantll 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
278 | 277 | feq1d 6732 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
279 | 273, 278 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
280 | 279 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
281 | 280, 231 | ffvelcdmd 7119 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
282 | 232, 281 | mulcld 11310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
283 | 203, 282 | mulcld 11310 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
284 | 203 | 3expa 1118 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
285 | 234 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℤ) |
286 | 285, 199 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
287 | | peano2re 11463 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ ℝ → (𝑖 + 1) ∈
ℝ) |
288 | 237, 287 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 + 1) ∈ ℝ) |
289 | | peano2re 11463 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
290 | 238, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ∈ ℝ) |
291 | 238 | ltp1d 12225 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑘 + 1)) |
292 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝑖) → 1 ∈ ℝ) |
293 | 238, 237,
292, 215 | leadd1dd 11904 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ≤ (𝑖 + 1)) |
294 | 238, 290,
288, 291, 293 | ltletrd 11450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑖 + 1)) |
295 | 238, 288,
294 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ (𝑖 + 1)) |
296 | 295 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ (𝑖 + 1)) |
297 | 214, 287 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℝ) |
298 | 297, 210 | subge0d 11880 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
299 | 296, 298 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
300 | 297, 210 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
301 | | elfzop1le2 13729 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ≤ 𝑁) |
302 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ≤ 𝑁) |
303 | 297, 212,
210, 302 | lesub1dd 11906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
304 | 249, 253 | breqtrd 5192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ 𝑁) |
305 | 300, 243,
212, 303, 304 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
306 | 205, 207,
286, 299, 305 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
307 | 306 | adantll 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
308 | | ovex 7481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) − 𝑘) ∈ V |
309 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁))) |
310 | 309 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)))) |
311 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
312 | 311 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
313 | 310, 312 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
314 | 308, 313,
271 | vtocl 3570 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
315 | 204, 307,
314 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
316 | 142 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
317 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → 𝑛 = ((𝑖 + 1) − 𝑘)) |
318 | 317 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
319 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) ∈ V) |
320 | 316, 318,
307, 319 | fvmptd 7036 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
321 | 320 | feq1d 6732 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
322 | 315, 321 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
323 | 322 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
324 | 232 | 3expa 1118 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
325 | 323, 324 | mulcomd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
326 | 325 | oveq2d 7464 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) = ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
327 | 199 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℤ) |
328 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 0 ∈ ℝ) |
329 | 328, 238,
290, 208, 291 | lelttrd 11448 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 0 < (𝑘 + 1)) |
330 | 328, 290,
329 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑘 + 1)) |
331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑘 + 1)) |
332 | 210, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℝ) |
333 | 293 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ (𝑖 + 1)) |
334 | 332, 297,
212, 333, 302 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ 𝑁) |
335 | 205, 207,
327, 331, 334 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
336 | 335 | adantll 713 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
337 | | ovex 7481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 + 1) ∈ V |
338 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝑗 ∈ (0...𝑁) ↔ (𝑘 + 1) ∈ (0...𝑁))) |
339 | 338 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)))) |
340 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑘 + 1))) |
341 | 340 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝐶‘𝑗):𝑋⟶ℂ ↔ (𝐶‘(𝑘 + 1)):𝑋⟶ℂ)) |
342 | 339, 341 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑘 + 1) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ))) |
343 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
344 | | nfmpt1 5274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
345 | 106, 344 | nfcxfr 2906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝐶 |
346 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝑗 |
347 | 345, 346 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝐶‘𝑗) |
348 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝑋 |
349 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘ℂ |
350 | 347, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘𝑗):𝑋⟶ℂ |
351 | 343, 350 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
352 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑗 → (𝐶‘𝑘) = (𝐶‘𝑗)) |
353 | 352 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘𝑗):𝑋⟶ℂ)) |
354 | 266, 353 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ))) |
355 | 351, 354,
228 | chvarfv 2241 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
356 | 337, 342,
355 | vtocl 3570 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
357 | 204, 336,
356 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
358 | 357 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑘 + 1))‘𝑥) ∈ ℂ) |
359 | 281 | 3expa 1118 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
360 | 358, 359 | mulcld 11310 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
361 | 323, 324 | mulcld 11310 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) ∈ ℂ) |
362 | 360, 361 | addcld 11309 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) ∈ ℂ) |
363 | 326, 362 | eqeltrrd 2845 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
364 | 284, 363 | mulcld 11310 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
365 | 364 | 3impa 1110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
366 | 204, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ {ℝ, ℂ}) |
367 | 171 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
368 | 204, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
369 | 366, 368,
202 | dvmptconst 45836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑖C𝑘))) = (𝑥 ∈ 𝑋 ↦ 0)) |
370 | 282 | 3expa 1118 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
371 | 204, 222,
226 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
372 | 371 | eqcomd 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘𝑘) = (𝐶‘𝑘)) |
373 | 229 | feqmptd 6990 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) |
374 | 372, 373 | eqtr2d 2781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥)) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
375 | 374 | oveq2d 7464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
376 | 366, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ⊆ ℂ) |
377 | 204, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
378 | | elfznn0 13677 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) |
379 | 378 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
380 | | dvnp1 25981 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)
∧ 𝑘 ∈
ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
381 | 376, 377,
379, 380 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
382 | 381 | eqcomd 2746 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
383 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
384 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) ∈ V) |
385 | 109, 383,
336, 384 | fvmptd3 7052 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
386 | 385 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝐶‘(𝑘 + 1))) |
387 | 357 | feqmptd 6990 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
388 | 386, 387 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
389 | 375, 382,
388 | 3eqtrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
390 | 277 | eqcomd 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
391 | 279 | feqmptd 6990 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
392 | 390, 391 | eqtr2d 2781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
393 | 392 | oveq2d 7464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
394 | 204, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
395 | | fznn0sub 13616 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 − 𝑘) ∈
ℕ0) |
396 | 395 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈
ℕ0) |
397 | | dvnp1 25981 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆)
∧ (𝑖 − 𝑘) ∈ ℕ0)
→ ((𝑆
D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
398 | 376, 394,
396, 397 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
399 | 398 | eqcomd 2746 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) = ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1))) |
400 | 214 | recnd 11318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℂ) |
401 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 1 ∈ ℂ) |
402 | 210 | recnd 11318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℂ) |
403 | 400, 401,
402 | addsubd 11668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) = ((𝑖 − 𝑘) + 1)) |
404 | 403 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 − 𝑘) + 1) = ((𝑖 + 1) − 𝑘)) |
405 | 404 | fveq2d 6924 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
406 | 405 | adantll 713 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
407 | 320 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
408 | 322 | feqmptd 6990 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
409 | 406, 407,
408 | 3eqtrd 2784 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
410 | 393, 399,
409 | 3eqtrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
411 | 366, 324,
358, 389, 359, 323, 410 | dvmptmul 26019 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))))) |
412 | 366, 284,
367, 369, 370, 362, 411 | dvmptmul 26019 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))))) |
413 | 370 | mul02d 11488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = 0) |
414 | 326 | oveq1d 7463 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘))) |
415 | 363, 284 | mulcomd 11311 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
416 | 414, 415 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
417 | 413, 416 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
418 | 364 | addlidd 11491 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
419 | 417, 418 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
420 | 419 | mpteq2dva 5266 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
421 | 412, 420 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
422 | 192, 193,
194, 195, 196, 283, 365, 421 | dvmptfsum 26033 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
423 | 202 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
424 | 360 | an32s 651 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
425 | | anass 468 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋))) |
426 | | ancom 460 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) |
427 | 426 | anbi2i 622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
428 | | anass 468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
429 | 428 | bicomi 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
430 | 427, 429 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
431 | 425, 430 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
432 | 431 | imbi1i 349 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ)) |
433 | 324, 432 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
434 | 431 | imbi1i 349 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ)) |
435 | 323, 434 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
436 | 433, 435 | mulcld 11310 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
437 | 423, 424,
436 | adddid 11314 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
438 | 437 | sumeq2dv 15750 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
439 | 196 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...𝑖) ∈ Fin) |
440 | 423, 424 | mulcld 11310 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
441 | 423, 436 | mulcld 11310 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
442 | 439, 440,
441 | fsumadd 15788 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
443 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (𝑖C𝑘) = (𝑖Cℎ)) |
444 | | fvoveq1 7471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐶‘(𝑘 + 1)) = (𝐶‘(ℎ + 1))) |
445 | 444 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐶‘(𝑘 + 1))‘𝑥) = ((𝐶‘(ℎ + 1))‘𝑥)) |
446 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ℎ → (𝑖 − 𝑘) = (𝑖 − ℎ)) |
447 | 446 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐷‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − ℎ))) |
448 | 447 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐷‘(𝑖 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
449 | 445, 448 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
450 | 443, 449 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
451 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎℎ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
452 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝑖Cℎ) |
453 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘
· |
454 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(ℎ + 1) |
455 | 345, 454 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘(ℎ + 1)) |
456 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘𝑥 |
457 | 455, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐶‘(ℎ + 1))‘𝑥) |
458 | | nfmpt1 5274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
459 | 139, 458 | nfcxfr 2906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐷 |
460 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝑖 − ℎ) |
461 | 459, 460 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐷‘(𝑖 − ℎ)) |
462 | 461, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐷‘(𝑖 − ℎ))‘𝑥) |
463 | 457, 453,
462 | nfov 7478 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
464 | 452, 453,
463 | nfov 7478 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
465 | 450, 451,
464 | cbvsum 15743 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
466 | 465 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
467 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℤ) |
468 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℤ) |
469 | 233 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑖 ∈ ℤ) |
470 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
471 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘ℎ |
472 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(0...𝑖) |
473 | 471, 472 | nfel 2923 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘 ℎ ∈ (0...𝑖) |
474 | 470, 473 | nfan 1898 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) |
475 | 464, 349 | nfel 2923 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ |
476 | 474, 475 | nfim 1895 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
477 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → (𝑘 ∈ (0...𝑖) ↔ ℎ ∈ (0...𝑖))) |
478 | 477 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)))) |
479 | 450 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ ↔ ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ)) |
480 | 478, 479 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → (((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ))) |
481 | 476, 480,
440 | chvarfv 2241 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
482 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (𝑖Cℎ) = (𝑖C(𝑗 − 1))) |
483 | | fvoveq1 7471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐶‘(ℎ + 1)) = (𝐶‘((𝑗 − 1) + 1))) |
484 | 483 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐶‘(ℎ + 1))‘𝑥) = ((𝐶‘((𝑗 − 1) + 1))‘𝑥)) |
485 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑗 − 1) → (𝑖 − ℎ) = (𝑖 − (𝑗 − 1))) |
486 | 485 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐷‘(𝑖 − ℎ)) = (𝐷‘(𝑖 − (𝑗 − 1)))) |
487 | 486 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐷‘(𝑖 − ℎ))‘𝑥) = ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) |
488 | 484, 487 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) = (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
489 | 482, 488 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑗 − 1) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
490 | 467, 468,
469, 481, 489 | fsumshft 15828 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
491 | 466, 490 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
492 | | 0p1e1 12415 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
493 | 492 | oveq1i 7458 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 +
1)...(𝑖 + 1)) = (1...(𝑖 + 1)) |
494 | 493 | sumeq1i 15745 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑗 ∈ ((0
+ 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
495 | 494 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
496 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℤ) |
497 | 496 | zcnd 12748 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℂ) |
498 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℂ) |
499 | 497, 498 | npcand 11651 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
500 | 499 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → (𝐶‘((𝑗 − 1) + 1)) = (𝐶‘𝑗)) |
501 | 500 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
502 | 501 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
503 | 213 | recnd 11318 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℂ) |
504 | 503 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℂ) |
505 | 497 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℂ) |
506 | 498 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℂ) |
507 | 504, 505,
506 | subsub3d 11677 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 − (𝑗 − 1)) = ((𝑖 + 1) − 𝑗)) |
508 | 507 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘(𝑖 − (𝑗 − 1))) = (𝐷‘((𝑖 + 1) − 𝑗))) |
509 | 508 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
510 | 502, 509 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) = (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
511 | 510 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
512 | 511 | sumeq2dv 15750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
513 | 512 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
514 | | nfv 1913 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
515 | | nfcv 2908 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
516 | | fzfid 14024 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...(𝑖 + 1)) ∈ Fin) |
517 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℕ0) |
518 | 496 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℤ) |
519 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℤ) |
520 | 518, 519 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑗 − 1) ∈ ℤ) |
521 | 517, 520 | bccld 45230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
522 | 521 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
523 | 522 | adantll 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
524 | 523 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
525 | 1 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝜑) |
526 | | 0zd 12651 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ∈
ℤ) |
527 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
528 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ∈
ℝ) |
529 | 496 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ) |
530 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℝ) |
531 | | 0lt1 11812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 <
1 |
532 | 531 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 1) |
533 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ≤ 𝑗) |
534 | 528, 530,
529, 532, 533 | ltletrd 11450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 𝑗) |
535 | 528, 529,
534 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ≤ 𝑗) |
536 | 535 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ 𝑗) |
537 | 529 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ) |
538 | 213 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℝ) |
539 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℝ) |
540 | 538, 539 | readdcld 11319 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
541 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
542 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ≤ (𝑖 + 1)) |
543 | 542 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ (𝑖 + 1)) |
544 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
545 | 537, 540,
541, 543, 544 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ 𝑁) |
546 | 526, 527,
518, 536, 545 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
547 | 546 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
548 | 525, 547,
355 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
549 | 548 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
550 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
551 | 549, 550 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
552 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℤ) |
553 | 552 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
554 | 553, 518 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℤ) |
555 | 540, 537 | subge0d 11880 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑗) ↔ 𝑗 ≤ (𝑖 + 1))) |
556 | 543, 555 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑗)) |
557 | 540, 537 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℝ) |
558 | 557 | leidd 11856 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ ((𝑖 + 1) − 𝑗)) |
559 | 529, 534 | elrpd 13096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ+) |
560 | 559 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ+) |
561 | 540, 560 | ltsubrpd 13131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < (𝑖 + 1)) |
562 | 557, 540,
541, 561, 544 | ltletrd 11450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
563 | 557, 557,
541, 558, 562 | lelttrd 11448 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
564 | 557, 541,
563 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ 𝑁) |
565 | 526, 527,
554, 556, 564 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
566 | 565 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
567 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
568 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘((𝑖 + 1) − 𝑗) |
569 | 459, 568 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)) |
570 | 569, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ |
571 | 567, 570 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
572 | | ovex 7481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 + 1) − 𝑗) ∈ V |
573 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝑘 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁))) |
574 | 573 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)))) |
575 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝐷‘𝑘) = (𝐷‘((𝑖 + 1) − 𝑗))) |
576 | 575 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ)) |
577 | 574, 576 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ))) |
578 | 139 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘))) |
579 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘) ∈ V) |
580 | 578, 579 | fvmpt2d 7042 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑘)) |
581 | 580 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ)) |
582 | 270, 581 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) |
583 | 571, 572,
577, 582 | vtoclf 3576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
584 | 525, 566,
583 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
585 | 584 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
586 | 585, 550 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
587 | 551, 586 | mulcld 11310 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
588 | 524, 587 | mulcld 11310 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
589 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℤ) |
590 | 233 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℤ) |
591 | 492 | eqcomi 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (0 +
1) |
592 | 591 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → 1 = (0 + 1)) |
593 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ ℝ) |
594 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℝ) |
595 | 185 | nn0ge0d 12616 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ≤ 𝑖) |
596 | 593, 213,
594, 595 | leadd1dd 11904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (0 + 1) ≤ (𝑖 + 1)) |
597 | 592, 596 | eqbrtrd 5188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ≤ (𝑖 + 1)) |
598 | 589, 590,
597 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
599 | | eluz2 12909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
600 | 598, 599 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘1)) |
601 | | eluzfz2 13592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
602 | 600, 601 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
603 | 602 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
604 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → (𝑗 − 1) = ((𝑖 + 1) − 1)) |
605 | 604 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (𝑖C(𝑗 − 1)) = (𝑖C((𝑖 + 1) − 1))) |
606 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑖 + 1))) |
607 | 606 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
608 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑖 + 1) → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − (𝑖 + 1))) |
609 | 608 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
610 | 609 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
611 | 607, 610 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
612 | 605, 611 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑖 + 1) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
613 | 514, 515,
516, 588, 603, 612 | fsumsplit1 15793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
614 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℂ) |
615 | 503, 614 | pncand 11648 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 1) = 𝑖) |
616 | 615 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = (𝑖C𝑖)) |
617 | | bcnn 14361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖C𝑖) = 1) |
618 | 185, 617 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C𝑖) = 1) |
619 | 616, 618 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = 1) |
620 | 503, 614 | addcld 11309 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℂ) |
621 | 620 | subidd 11635 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − (𝑖 + 1)) = 0) |
622 | 621 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
623 | 622 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) = ((𝐷‘0)‘𝑥)) |
624 | 623 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
625 | 619, 624 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
626 | 625 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
627 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝜑) |
628 | | fzofzp1 13814 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁)) |
629 | 628 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁)) |
630 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) |
631 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝑖 + 1) |
632 | 345, 631 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)) |
633 | 632, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)):𝑋⟶ℂ |
634 | 630, 633 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
635 | | ovex 7481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 + 1) ∈ V |
636 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑖 + 1) ∈ (0...𝑁))) |
637 | 636 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)))) |
638 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝐶‘𝑘) = (𝐶‘(𝑖 + 1))) |
639 | 638 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘(𝑖 + 1)):𝑋⟶ℂ)) |
640 | 637, 639 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ))) |
641 | 634, 635,
640, 228 | vtoclf 3576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
642 | 627, 629,
641 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
643 | 642 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
644 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝜑 ∧ 0 ∈ (0...𝑁)) |
645 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑘0 |
646 | 459, 645 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝐷‘0) |
647 | 646, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘0):𝑋⟶ℂ |
648 | 644, 647 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
649 | | c0ex 11284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
650 | | eleq1 2832 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝑘 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁))) |
651 | 650 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁)))) |
652 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝐷‘𝑘) = (𝐷‘0)) |
653 | 652 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
654 | 651, 653 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ))) |
655 | 648, 649,
654, 582 | vtoclf 3576 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
656 | 1, 112, 655 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐷‘0):𝑋⟶ℂ) |
657 | 656 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
658 | 657 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘0)‘𝑥) ∈ ℂ) |
659 | 643, 658 | mulcld 11310 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) ∈ ℂ) |
660 | 659 | mullidd 11308 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
661 | 626, 660 | eqtrd 2780 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
662 | | 1m1e0 12365 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1
− 1) = 0 |
663 | 662 | fveq2i 6923 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
664 | 3 | eqcomi 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘0) = ℕ0 |
665 | 663, 664 | eqtr2i 2769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
666 | 665 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ℕ0 =
(ℤ≥‘(1 − 1))) |
667 | 185, 666 | eleqtrd 2846 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (ℤ≥‘(1
− 1))) |
668 | | fzdifsuc2 45225 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈
(ℤ≥‘(1 − 1)) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
669 | 667, 668 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
670 | 669 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)}) = (1...𝑖)) |
671 | 670 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
672 | 671 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
673 | 661, 672 | oveq12d 7466 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
674 | 513, 613,
673 | 3eqtrd 2784 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
675 | 491, 495,
674 | 3eqtrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
676 | | nfcv 2908 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑖C0) |
677 | 345, 645 | nffv 6930 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐶‘0) |
678 | 677, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐶‘0)‘𝑥) |
679 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1) − 0) |
680 | 459, 679 | nffv 6930 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 0)) |
681 | 680, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 0))‘𝑥) |
682 | 678, 453,
681 | nfov 7478 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
683 | 676, 453,
682 | nfov 7478 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
684 | 664 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (ℤ≥‘0) =
ℕ0) |
685 | 185, 684 | eleqtrrd 2847 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈
(ℤ≥‘0)) |
686 | | eluzfz1 13591 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑖)) |
687 | 685, 686 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ (0...𝑖)) |
688 | 687 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ (0...𝑖)) |
689 | | oveq2 7456 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑖C𝑘) = (𝑖C0)) |
690 | 104 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘0)‘𝑥)) |
691 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − 0)) |
692 | 691 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 0))) |
693 | 692 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
694 | 690, 693 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
695 | 689, 694 | oveq12d 7466 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
696 | 470, 683,
439, 441, 688, 695 | fsumsplit1 15793 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
697 | 620 | subid1d 11636 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 0) = (𝑖 + 1)) |
698 | 697 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − 0)) = (𝐷‘(𝑖 + 1))) |
699 | 698 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − 0))‘𝑥) = ((𝐷‘(𝑖 + 1))‘𝑥)) |
700 | 699 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
701 | 700 | oveq2d 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
702 | 701 | oveq1d 7463 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
703 | 702 | ad2antlr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
704 | | bcn0 14359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ (𝑖C0) =
1) |
705 | 185, 704 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C0) = 1) |
706 | 705 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
707 | 706 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
708 | 677, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘0):𝑋⟶ℂ |
709 | 644, 708 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
710 | 104 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘0):𝑋⟶ℂ)) |
711 | 651, 710 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ))) |
712 | 709, 649,
711, 228 | vtoclf 3576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
713 | 1, 112, 712 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐶‘0):𝑋⟶ℂ) |
714 | 713 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
715 | 714 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘0)‘𝑥) ∈ ℂ) |
716 | 459, 631 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)) |
717 | 716, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)):𝑋⟶ℂ |
718 | 630, 717 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
719 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘𝑘) = (𝐷‘(𝑖 + 1))) |
720 | 719 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘(𝑖 + 1)):𝑋⟶ℂ)) |
721 | 637, 720 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ))) |
722 | 718, 635,
721, 582 | vtoclf 3576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
723 | 627, 629,
722 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
724 | 723 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
725 | 715, 724 | mulcld 11310 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) ∈ ℂ) |
726 | 725 | mullidd 11308 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
727 | 707, 726 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
728 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗 𝑖 ∈ (0..^𝑁) |
729 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ∈
ℤ) |
730 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑖 ∈ ℤ) |
731 | | eldifi 4154 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (0...𝑖)) |
732 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
733 | 731, 732 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℤ) |
734 | 733 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ ℤ) |
735 | | elfznn0 13677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℕ0) |
736 | 731, 735 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ0) |
737 | | eldifsni 4815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≠ 0) |
738 | 736, 737 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → (𝑗 ∈ ℕ0 ∧ 𝑗 ≠ 0)) |
739 | | elnnne0 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0
∧ 𝑗 ≠
0)) |
740 | 738, 739 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ) |
741 | | nnge1 12321 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
742 | 740, 741 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 1 ≤ 𝑗) |
743 | 742 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ≤ 𝑗) |
744 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
745 | 731, 744 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≤ 𝑖) |
746 | 745 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ≤ 𝑖) |
747 | 729, 730,
734, 743, 746 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ (1...𝑖)) |
748 | 747 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (1...𝑖))) |
749 | | 0zd 12651 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℤ) |
750 | | elfzel2 13582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑖 ∈ ℤ) |
751 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℤ) |
752 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℝ) |
753 | 751 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℝ) |
754 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 1 ∈ ℝ) |
755 | 531 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 0 < 1) |
756 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 1 ≤ 𝑗) |
757 | 752, 754,
753, 755, 756 | ltletrd 11450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 0 < 𝑗) |
758 | 752, 753,
757 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 0 ≤ 𝑗) |
759 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≤ 𝑖) |
760 | 749, 750,
751, 758, 759 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (0...𝑖)) |
761 | 752, 757 | gtned 11425 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≠ 0) |
762 | | nelsn 4688 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ≠ 0 → ¬ 𝑗 ∈ {0}) |
763 | 761, 762 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → ¬ 𝑗 ∈ {0}) |
764 | 760, 763 | eldifd 3987 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
765 | 764 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
766 | 765 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0}))) |
767 | 748, 766 | impbid 212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
768 | 728, 767 | alrimi 2214 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
769 | | dfcleq 2733 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑖) ∖
{0}) = (1...𝑖) ↔
∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
770 | 768, 769 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
771 | 770 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
772 | 771 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
773 | 727, 772 | oveq12d 7466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
774 | 696, 703,
773 | 3eqtrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
775 | 675, 774 | oveq12d 7466 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
776 | | fzfid 14024 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) ∈ Fin) |
777 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
778 | 765, 733 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ℤ) |
779 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 1 ∈ ℤ) |
780 | 778, 779 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑗 − 1) ∈ ℤ) |
781 | 777, 780 | bccld 45230 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
782 | 781 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
783 | 782 | adantll 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
784 | 783 | adantlr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
785 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋)) |
786 | | fzelp1 13636 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (1...(𝑖 + 1))) |
787 | 786 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ (1...(𝑖 + 1))) |
788 | 785, 787,
551 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
789 | 787, 586 | syldan 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
790 | 788, 789 | mulcld 11310 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
791 | 784, 790 | mulcld 11310 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
792 | 776, 791 | fsumcl 15781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
793 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
794 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℤ) |
795 | 794 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℤ) |
796 | 793, 795 | bccld 45230 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
797 | 796 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
798 | 797 | adantll 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
799 | 798 | adantlr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
800 | | simpll 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝜑 ∧ 𝑖 ∈ (0..^𝑁))) |
801 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑥 ∈ 𝑋) |
802 | 760 | ssriv 4012 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑖) ⊆
(0...𝑖) |
803 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (1...𝑖)) |
804 | 802, 803 | sselid 4006 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (0...𝑖)) |
805 | 804 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ (0...𝑖)) |
806 | 800, 801,
805, 433 | syl21anc 837 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
807 | 805, 435 | syldan 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
808 | 806, 807 | mulcld 11310 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
809 | 799, 808 | mulcld 11310 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
810 | 776, 809 | fsumcl 15781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
811 | 659, 792,
725, 810 | add4d 11518 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
812 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1)) |
813 | 812 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (𝑖C(𝑗 − 1)) = (𝑖C(𝑘 − 1))) |
814 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐶‘𝑗) = (𝐶‘𝑘)) |
815 | 814 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘𝑘)‘𝑥)) |
816 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑘 → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − 𝑘)) |
817 | 816 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
818 | 817 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
819 | 815, 818 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
820 | 813, 819 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
821 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑖C(𝑗 − 1)) |
822 | 347, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐶‘𝑗)‘𝑥) |
823 | 569, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) |
824 | 822, 453,
823 | nfov 7478 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
825 | 821, 453,
824 | nfov 7478 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
826 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
827 | 820, 825,
826 | cbvsum 15743 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑗 ∈
(1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
828 | 827 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
829 | 828 | oveq1d 7463 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
830 | | peano2zm 12686 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
831 | 795, 830 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑘 − 1) ∈ ℤ) |
832 | 793, 831 | bccld 45230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈
ℕ0) |
833 | 832 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
834 | 833 | adantll 713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
835 | 834 | adantlr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
836 | 835, 808 | mulcld 11310 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
837 | 776, 836,
809 | fsumadd 15788 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
838 | 837 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
839 | 833, 797 | addcomd 11492 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) = ((𝑖C𝑘) + (𝑖C(𝑘 − 1)))) |
840 | | bcpasc 14370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
841 | 793, 795,
840 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
842 | 839, 841 | eqtr2d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) = ((𝑖C(𝑘 − 1)) + (𝑖C𝑘))) |
843 | 842 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
844 | 843 | adantll 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
845 | 844 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
846 | 835, 799,
808 | adddird 11315 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
847 | 845, 846 | eqtr2d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
848 | 847 | sumeq2dv 15750 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
849 | 829, 838,
848 | 3eqtrd 2784 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
850 | 849 | oveq2d 7464 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
851 | | peano2nn0 12593 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
852 | 793, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
853 | 852, 795 | bccld 45230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
854 | 853 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
855 | 854 | adantll 713 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
856 | 855 | adantlr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
857 | 856, 808 | mulcld 11310 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
858 | 776, 857 | fsumcl 15781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
859 | 659, 725,
858 | addassd 11312 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
860 | 185, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
ℕ0) |
861 | | bcn0 14359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C0) =
1) |
862 | 860, 861 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C0) = 1) |
863 | 862, 700 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
864 | 863 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
865 | 864, 726 | eqtr2d 2781 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
866 | 770 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
867 | 866 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) = ((0...𝑖) ∖ {0})) |
868 | 867 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
869 | 865, 868 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
870 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1)C0) |
871 | 870, 453,
682 | nfov 7478 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
872 | 197, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
873 | 872, 199 | bccld 45230 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
874 | 873 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
875 | 874 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
876 | 875 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
877 | 876, 436 | mulcld 11310 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
878 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C0)) |
879 | 878, 694 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
880 | 470, 871,
439, 877, 688, 879 | fsumsplit1 15793 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
881 | 880 | eqcomd 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
882 | 869, 881 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
883 | 882 | oveq2d 7464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
884 | | bcnn 14361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C(𝑖 + 1)) = 1) |
885 | 860, 884 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
886 | 885 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
887 | 886 | oveq1d 7463 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
888 | 622 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
889 | 888 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
890 | 657, 889 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
891 | 890 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
892 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
893 | 891, 892 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) ∈ ℂ) |
894 | 643, 893 | mulcld 11310 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) ∈ ℂ) |
895 | 894 | mullidd 11308 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
896 | 624 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
897 | 887, 895,
896 | 3eqtrrd 2785 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
898 | | fzdifsuc 13644 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘0) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
899 | 685, 898 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
900 | 899 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
901 | 900 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
902 | 897, 901 | oveq12d 7466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
903 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖 + 1)C(𝑖 + 1)) |
904 | 632, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐶‘(𝑖 + 1))‘𝑥) |
905 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝑖 + 1) − (𝑖 + 1)) |
906 | 459, 905 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − (𝑖 + 1))) |
907 | 906, 456 | nffv 6930 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) |
908 | 904, 453,
907 | nfov 7478 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
909 | 903, 453,
908 | nfov 7478 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
910 | | fzfid 14024 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...(𝑖 + 1)) ∈ Fin) |
911 | 860 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈
ℕ0) |
912 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ∈ ℤ) |
913 | 912 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℤ) |
914 | 911, 913 | bccld 45230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
915 | 914 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
916 | 915 | adantll 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
917 | 916 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
918 | 627 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
919 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℤ) |
920 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
921 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 0 ≤ 𝑘) |
922 | 921 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ 𝑘) |
923 | 913 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℝ) |
924 | 911 | nn0red 12614 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
925 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
926 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ≤ (𝑖 + 1)) |
927 | 926 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ (𝑖 + 1)) |
928 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
929 | 923, 924,
925, 927, 928 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ 𝑁) |
930 | 919, 920,
913, 922, 929 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
931 | 930 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
932 | 918, 931,
228 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
933 | 932 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
934 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
935 | 933, 934 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
936 | 918 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
937 | 590 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
938 | 937, 913 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
939 | 924, 923 | subge0d 11880 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
940 | 927, 939 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
941 | 924, 923 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
942 | 925, 923 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ∈ ℝ) |
943 | 925, 171,
246 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) ∈ ℝ) |
944 | 924, 925,
923, 928 | lesub1dd 11906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
945 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℝ) |
946 | 945, 923,
925, 922 | lesub2dd 11907 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
947 | 941, 942,
943, 944, 946 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 0)) |
948 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) = 𝑁) |
949 | 947, 948 | breqtrd 5192 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
950 | 919, 920,
938, 940, 949 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
951 | 950 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
952 | 951 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
953 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝐷‘𝑗) = (𝐷‘((𝑖 + 1) − 𝑘))) |
954 | 953 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝐷‘𝑗):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
955 | 310, 954 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
956 | 459, 346 | nffv 6930 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘𝑗) |
957 | 956, 348,
349 | nff 6743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘𝑗):𝑋⟶ℂ |
958 | 343, 957 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
959 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑗 → (𝐷‘𝑘) = (𝐷‘𝑗)) |
960 | 959 | feq1d 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑗 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘𝑗):𝑋⟶ℂ)) |
961 | 266, 960 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ))) |
962 | 958, 961,
582 | chvarfv 2241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
963 | 308, 955,
962 | vtocl 3570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
964 | 936, 952,
963 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
965 | 964, 934 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
966 | 935, 965 | mulcld 11310 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
967 | 917, 966 | mulcld 11310 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
968 | 860, 684 | eleqtrrd 2847 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘0)) |
969 | | eluzfz2 13592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘0) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
970 | 968, 969 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
971 | 970 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
972 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C(𝑖 + 1))) |
973 | 638 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
974 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − (𝑖 + 1))) |
975 | 974 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
976 | 975 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
977 | 973, 976 | oveq12d 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
978 | 972, 977 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑖 + 1) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
979 | 470, 909,
910, 967, 971, 978 | fsumsplit1 15793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
980 | 979 | eqcomd 2746 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
981 | 883, 902,
980 | 3eqtrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
982 | 850, 859,
981 | 3eqtrd 2784 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
983 | 775, 811,
982 | 3eqtrd 2784 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
984 | 438, 442,
983 | 3eqtrd 2784 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
985 | 984 | mpteq2dva 5266 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
986 | 422, 985 | eqtrd 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
987 | 986 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
988 | 189, 191,
987 | 3eqtrd 2784 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
989 | 178, 179,
182, 988 | syl21anc 837 |
. . . . . 6
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
990 | 989 | 3exp 1119 |
. . . . 5
⊢ (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
991 | 34, 47, 60, 73, 177, 990 | fzind2 13835 |
. . . 4
⊢ (𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
992 | 21, 991 | vtoclg 3566 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
993 | 2, 6, 992 | sylc 65 |
. 2
⊢ (𝜑 → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
994 | 1, 993 | mpd 15 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |