| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
| 2 | | dvnmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | nn0uz 12920 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | eleqtrdi 2851 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 5 | | eluzfz2 13572 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 7 | | eleq1 2829 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁))) |
| 8 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁)) |
| 9 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
| 10 | 9 | sumeq1d 15736 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 11 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
| 12 | | fvoveq1 7454 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝐷‘(𝑛 − 𝑘)) = (𝐷‘(𝑁 − 𝑘))) |
| 13 | 12 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → ((𝐷‘(𝑛 − 𝑘))‘𝑥) = ((𝐷‘(𝑁 − 𝑘))‘𝑥)) |
| 14 | 13 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))) |
| 15 | 11, 14 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = ((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 16 | 15 | sumeq2sdv 15739 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 17 | 10, 16 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 18 | 17 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |
| 19 | 8, 18 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
| 20 | 19 | imbi2d 340 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
| 21 | 7, 20 | imbi12d 344 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) ↔ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))))) |
| 22 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑚 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0)) |
| 23 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 0) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...0)) |
| 25 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → 𝑚 = 0) |
| 26 | 25 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝑚C𝑘) = (0C𝑘)) |
| 27 | 25 | fvoveq1d 7453 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(0 − 𝑘))) |
| 28 | 27 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(0 − 𝑘))‘𝑥)) |
| 29 | 28 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
| 30 | 26, 29 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 31 | 24, 30 | sumeq12rdv 15743 |
. . . . . . . 8
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 32 | 31 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 33 | 22, 32 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 0 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
| 34 | 33 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))))) |
| 35 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) |
| 36 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑖) |
| 37 | 36 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑖)) |
| 38 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → 𝑚 = 𝑖) |
| 39 | 38 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑚C𝑘) = (𝑖C𝑘)) |
| 40 | 38 | fvoveq1d 7453 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
| 41 | 40 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − 𝑘))‘𝑥)) |
| 42 | 41 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 43 | 39, 42 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
| 44 | 37, 43 | sumeq12rdv 15743 |
. . . . . . . 8
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
| 45 | 44 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 46 | 35, 45 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 𝑖 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 47 | 46 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑖 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))))) |
| 48 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1))) |
| 49 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → 𝑚 = (𝑖 + 1)) |
| 50 | 49 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...(𝑖 + 1))) |
| 51 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑚 = (𝑖 + 1)) |
| 52 | 51 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑚C𝑘) = ((𝑖 + 1)C𝑘)) |
| 53 | 51 | fvoveq1d 7453 |
. . . . . . . . . . . 12
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 54 | 53 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
| 55 | 54 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 56 | 52, 55 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 57 | 50, 56 | sumeq12rdv 15743 |
. . . . . . . 8
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 58 | 57 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 59 | 48, 58 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = (𝑖 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 60 | 59 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = (𝑖 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
| 61 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛)) |
| 62 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑛) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑛)) |
| 64 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → 𝑚 = 𝑛) |
| 65 | 64 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝑚C𝑘) = (𝑛C𝑘)) |
| 66 | 64 | fvoveq1d 7453 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑛 − 𝑘))) |
| 67 | 66 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑛 − 𝑘))‘𝑥)) |
| 68 | 67 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) |
| 69 | 65, 68 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 70 | 63, 69 | sumeq12rdv 15743 |
. . . . . . . 8
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 71 | 70 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) |
| 72 | 61, 71 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
| 73 | 72 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))))) |
| 74 | | dvnmul.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 75 | | recnprss 25939 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 76 | 74, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 77 | | dvnmul.a |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 78 | | dvnmul.cc |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 79 | 77, 78 | mulcld 11281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
| 80 | | restsspw 17476 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 |
| 81 | | dvnmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 82 | 80, 81 | sselid 3981 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 83 | | elpwi 4607 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 85 | | cnex 11236 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
| 86 | 85 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
V) |
| 87 | 79, 84, 86, 74 | mptelpm 45181 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) |
| 88 | | dvn0 25960 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 89 | 76, 87, 88 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 90 | | 0z 12624 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 91 | | fzsn 13606 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → (0...0) = {0}) |
| 92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0...0) =
{0} |
| 93 | 92 | sumeq1i 15733 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...0)((0C𝑘) ·
(((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
| 94 | 93 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 95 | | nfcvd 2906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Ⅎ𝑘(𝐴 · 𝐵)) |
| 96 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
| 97 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
| 98 | | 0nn0 12541 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
| 99 | | bcn0 14349 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
| 100 | 98, 99 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (0C0) =
1 |
| 101 | 100 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C0) =
1) |
| 102 | 97, 101 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 103 | 102 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (0C𝑘) = 1) |
| 104 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐶‘𝑘) = (𝐶‘0)) |
| 105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = (𝐶‘0)) |
| 106 | | dvnmul.c |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 107 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 108 | 107 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 109 | 106, 108 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 110 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0)) |
| 111 | | eluzfz1 13571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
| 112 | 4, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 113 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) ∈ V) |
| 114 | 109, 110,
112, 113 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
| 116 | 105, 115 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘0)) |
| 117 | | dvnmulf |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 118 | 77, 84, 86, 74 | mptelpm 45181 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) |
| 119 | 117, 118 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 120 | | dvn0 25960 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 𝐹)‘0) = 𝐹) |
| 121 | 76, 119, 120 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
| 123 | 116, 122 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = 𝐹) |
| 124 | 123 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 125 | 124 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 126 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 127 | 117 | fvmpt2 7027 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝐹‘𝑥) = 𝐴) |
| 128 | 126, 77, 127 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = 𝐴) |
| 129 | 128 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐹‘𝑥) = 𝐴) |
| 130 | 125, 129 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = 𝐴) |
| 131 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 𝑘) = (0 −
0)) |
| 132 | | 0m0e0 12386 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
− 0) = 0 |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 0) =
0) |
| 134 | 131, 133 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 135 | 134 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝐷‘(0 − 𝑘)) = (𝐷‘0)) |
| 136 | 135 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 137 | 136 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 138 | 137 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 139 | | dvnmul.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 140 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 141 | 140 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 142 | 139, 141 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 143 | 142 | fveq1i 6907 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) |
| 144 | 143 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0)) |
| 145 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
| 146 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
| 147 | 146 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
| 148 | | dvnmul.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 149 | 78, 84, 86, 74 | mptelpm 45181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (ℂ ↑pm 𝑆)) |
| 150 | 148, 149 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
| 151 | | dvn0 25960 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 𝐺)‘0) = 𝐺) |
| 152 | 76, 150, 151 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
| 153 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
| 154 | 147, 153 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = 𝐺) |
| 155 | 148 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 156 | | mptexg 7241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝒫 𝑆 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
| 157 | 82, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
| 158 | 155, 157 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ V) |
| 159 | 145, 154,
112, 158 | fvmptd 7023 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) = 𝐺) |
| 160 | 144, 159 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘0) = 𝐺) |
| 161 | 160 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
| 162 | 161 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
| 163 | 155, 78 | fvmpt2d 7029 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) = 𝐵) |
| 164 | 163 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐺‘𝑥) = 𝐵) |
| 165 | 138, 162,
164 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = 𝐵) |
| 166 | 130, 165 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)) = (𝐴 · 𝐵)) |
| 167 | 103, 166 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (1 · (𝐴 · 𝐵))) |
| 168 | 79 | mullidd 11279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
| 169 | 168 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
| 170 | 167, 169 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
| 171 | | 0re 11263 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 172 | 171 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
| 173 | 95, 96, 170, 172, 79 | sumsnd 45031 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
| 174 | 94, 173 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 175 | 174 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 176 | 89, 175 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 177 | 176 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
| 178 | | simp3 1139 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝜑) |
| 179 | | simp1 1137 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝑖 ∈ (0..^𝑁)) |
| 180 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 181 | | pm3.35 803 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 182 | 178, 180,
181 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 183 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ⊆ ℂ) |
| 184 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆)) |
| 185 | | elfzonn0 13747 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
| 186 | 185 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
| 187 | | dvnp1 25961 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ ↑pm 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 188 | 183, 184,
186, 187 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 189 | 188 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 190 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 191 | 190 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 192 | | eqid 2737 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
| 193 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 194 | 74 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
| 195 | 81 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 196 | | fzfid 14014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (0...𝑖) ∈ Fin) |
| 197 | 185 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℕ0) |
| 198 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℤ) |
| 199 | 198 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℤ) |
| 200 | 197, 199 | bccld 45327 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
| 201 | 200 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 202 | 201 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 203 | 202 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
| 204 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝜑) |
| 205 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℤ) |
| 206 | | elfzoel2 13698 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) |
| 207 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℤ) |
| 208 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ 𝑘) |
| 209 | 208 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ 𝑘) |
| 210 | 199 | zred 12722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℝ) |
| 211 | 206 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℝ) |
| 212 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℝ) |
| 213 | 185 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ) |
| 214 | 213 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
| 215 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ 𝑖) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑖) |
| 217 | | elfzolt2 13708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 < 𝑁) |
| 218 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 < 𝑁) |
| 219 | 210, 214,
212, 216, 218 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 < 𝑁) |
| 220 | 210, 212,
219 | ltled 11409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑁) |
| 221 | 205, 207,
199, 209, 220 | elfzd 13555 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
| 222 | 221 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
| 223 | | dvnmul.dvnf |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ) |
| 224 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 225 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) |
| 226 | 224, 225 | fvmpt2d 7029 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 227 | 226 | feq1d 6720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ)) |
| 228 | 223, 227 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 229 | 204, 222,
228 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 230 | 229 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 231 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 232 | 230, 231 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 233 | 185 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ) |
| 234 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℤ) |
| 235 | 234, 199 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℤ) |
| 236 | | elfzel2 13562 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℤ) |
| 237 | 236 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℝ) |
| 238 | 198 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℝ) |
| 239 | 237, 238 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → (0 ≤ (𝑖 − 𝑘) ↔ 𝑘 ≤ 𝑖)) |
| 240 | 215, 239 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑖 − 𝑘)) |
| 241 | 240 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑖 − 𝑘)) |
| 242 | 214, 210 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℝ) |
| 243 | 212, 210 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ∈ ℝ) |
| 244 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℝ) |
| 245 | 212, 244 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 ∈ ℝ ∧ 0 ∈
ℝ)) |
| 246 | | resubcl 11573 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 −
0) ∈ ℝ) |
| 247 | 245, 246 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) ∈ ℝ) |
| 248 | 214, 212,
210, 218 | ltsub1dd 11875 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 𝑘)) |
| 249 | 244, 210,
212, 209 | lesub2dd 11880 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
| 250 | 242, 243,
247, 248, 249 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 0)) |
| 251 | 211 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℂ) |
| 252 | 251 | subid1d 11609 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝑁 − 0) = 𝑁) |
| 253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) = 𝑁) |
| 254 | 250, 253 | breqtrd 5169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < 𝑁) |
| 255 | 242, 212,
254 | ltled 11409 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ≤ 𝑁) |
| 256 | 205, 207,
235, 241, 255 | elfzd 13555 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
| 257 | 256 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
| 258 | | ovex 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 − 𝑘) ∈ V |
| 259 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ (𝑖 − 𝑘) ∈ (0...𝑁))) |
| 260 | 259 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)))) |
| 261 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 262 | 261 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
| 263 | 260, 262 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ))) |
| 264 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
| 265 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝑁) ↔ 𝑗 ∈ (0...𝑁))) |
| 266 | 265 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝑁)))) |
| 267 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑗)) |
| 268 | 267 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ)) |
| 269 | 266, 268 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ))) |
| 270 | | dvnmul.dvng |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) |
| 271 | 264, 269,
270 | chvarfv 2240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
| 272 | 258, 263,
271 | vtocl 3558 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 273 | 204, 257,
272 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 274 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 275 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) ∈ V) |
| 276 | 142, 274,
256, 275 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 277 | 276 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 278 | 277 | feq1d 6720 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
| 279 | 273, 278 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 280 | 279 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 281 | 280, 231 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
| 282 | 232, 281 | mulcld 11281 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 283 | 203, 282 | mulcld 11281 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
| 284 | 203 | 3expa 1119 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
| 285 | 234 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℤ) |
| 286 | 285, 199 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
| 287 | | peano2re 11434 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ ℝ → (𝑖 + 1) ∈
ℝ) |
| 288 | 237, 287 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 + 1) ∈ ℝ) |
| 289 | | peano2re 11434 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
| 290 | 238, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ∈ ℝ) |
| 291 | 238 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑘 + 1)) |
| 292 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝑖) → 1 ∈ ℝ) |
| 293 | 238, 237,
292, 215 | leadd1dd 11877 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ≤ (𝑖 + 1)) |
| 294 | 238, 290,
288, 291, 293 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑖 + 1)) |
| 295 | 238, 288,
294 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ (𝑖 + 1)) |
| 296 | 295 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ (𝑖 + 1)) |
| 297 | 214, 287 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℝ) |
| 298 | 297, 210 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
| 299 | 296, 298 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
| 300 | 297, 210 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
| 301 | | elfzop1le2 13712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ≤ 𝑁) |
| 302 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ≤ 𝑁) |
| 303 | 297, 212,
210, 302 | lesub1dd 11879 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
| 304 | 249, 253 | breqtrd 5169 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ 𝑁) |
| 305 | 300, 243,
212, 303, 304 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
| 306 | 205, 207,
286, 299, 305 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 307 | 306 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 308 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) − 𝑘) ∈ V |
| 309 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁))) |
| 310 | 309 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)))) |
| 311 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 312 | 311 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 313 | 310, 312 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
| 314 | 308, 313,
271 | vtocl 3558 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 315 | 204, 307,
314 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 316 | 142 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
| 317 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → 𝑛 = ((𝑖 + 1) − 𝑘)) |
| 318 | 317 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 319 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) ∈ V) |
| 320 | 316, 318,
307, 319 | fvmptd 7023 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 321 | 320 | feq1d 6720 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 322 | 315, 321 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 323 | 322 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 324 | 232 | 3expa 1119 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 325 | 323, 324 | mulcomd 11282 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 326 | 325 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) = ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 327 | 199 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℤ) |
| 328 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 0 ∈ ℝ) |
| 329 | 328, 238,
290, 208, 291 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 0 < (𝑘 + 1)) |
| 330 | 328, 290,
329 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑘 + 1)) |
| 331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑘 + 1)) |
| 332 | 210, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℝ) |
| 333 | 293 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ (𝑖 + 1)) |
| 334 | 332, 297,
212, 333, 302 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ 𝑁) |
| 335 | 205, 207,
327, 331, 334 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 336 | 335 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 337 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 + 1) ∈ V |
| 338 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝑗 ∈ (0...𝑁) ↔ (𝑘 + 1) ∈ (0...𝑁))) |
| 339 | 338 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)))) |
| 340 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑘 + 1))) |
| 341 | 340 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝐶‘𝑗):𝑋⟶ℂ ↔ (𝐶‘(𝑘 + 1)):𝑋⟶ℂ)) |
| 342 | 339, 341 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑘 + 1) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ))) |
| 343 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
| 344 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 345 | 106, 344 | nfcxfr 2903 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝐶 |
| 346 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝑗 |
| 347 | 345, 346 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝐶‘𝑗) |
| 348 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝑋 |
| 349 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘ℂ |
| 350 | 347, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘𝑗):𝑋⟶ℂ |
| 351 | 343, 350 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 352 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑗 → (𝐶‘𝑘) = (𝐶‘𝑗)) |
| 353 | 352 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘𝑗):𝑋⟶ℂ)) |
| 354 | 266, 353 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ))) |
| 355 | 351, 354,
228 | chvarfv 2240 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 356 | 337, 342,
355 | vtocl 3558 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
| 357 | 204, 336,
356 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
| 358 | 357 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑘 + 1))‘𝑥) ∈ ℂ) |
| 359 | 281 | 3expa 1119 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
| 360 | 358, 359 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 361 | 323, 324 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) ∈ ℂ) |
| 362 | 360, 361 | addcld 11280 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) ∈ ℂ) |
| 363 | 326, 362 | eqeltrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 364 | 284, 363 | mulcld 11281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
| 365 | 364 | 3impa 1110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
| 366 | 204, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ {ℝ, ℂ}) |
| 367 | 171 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
| 368 | 204, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 369 | 366, 368,
202 | dvmptconst 45930 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑖C𝑘))) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 370 | 282 | 3expa 1119 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 371 | 204, 222,
226 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 372 | 371 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘𝑘) = (𝐶‘𝑘)) |
| 373 | 229 | feqmptd 6977 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) |
| 374 | 372, 373 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥)) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 375 | 374 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 376 | 366, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ⊆ ℂ) |
| 377 | 204, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 378 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) |
| 379 | 378 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 380 | | dvnp1 25961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)
∧ 𝑘 ∈
ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 381 | 376, 377,
379, 380 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 382 | 381 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 383 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 384 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) ∈ V) |
| 385 | 109, 383,
336, 384 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 386 | 385 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝐶‘(𝑘 + 1))) |
| 387 | 357 | feqmptd 6977 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 388 | 386, 387 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 389 | 375, 382,
388 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 390 | 277 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
| 391 | 279 | feqmptd 6977 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 392 | 390, 391 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 393 | 392 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 394 | 204, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
| 395 | | fznn0sub 13596 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 − 𝑘) ∈
ℕ0) |
| 396 | 395 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈
ℕ0) |
| 397 | | dvnp1 25961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆)
∧ (𝑖 − 𝑘) ∈ ℕ0)
→ ((𝑆
D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 398 | 376, 394,
396, 397 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 399 | 398 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) = ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1))) |
| 400 | 214 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℂ) |
| 401 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 1 ∈ ℂ) |
| 402 | 210 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℂ) |
| 403 | 400, 401,
402 | addsubd 11641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) = ((𝑖 − 𝑘) + 1)) |
| 404 | 403 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 − 𝑘) + 1) = ((𝑖 + 1) − 𝑘)) |
| 405 | 404 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 406 | 405 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 407 | 320 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 408 | 322 | feqmptd 6977 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 409 | 406, 407,
408 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 410 | 393, 399,
409 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 411 | 366, 324,
358, 389, 359, 323, 410 | dvmptmul 25999 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))))) |
| 412 | 366, 284,
367, 369, 370, 362, 411 | dvmptmul 25999 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))))) |
| 413 | 370 | mul02d 11459 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = 0) |
| 414 | 326 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘))) |
| 415 | 363, 284 | mulcomd 11282 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 416 | 414, 415 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 417 | 413, 416 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 418 | 364 | addlidd 11462 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 419 | 417, 418 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 420 | 419 | mpteq2dva 5242 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 421 | 412, 420 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 422 | 192, 193,
194, 195, 196, 283, 365, 421 | dvmptfsum 26013 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 423 | 202 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 424 | 360 | an32s 652 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 425 | | anass 468 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋))) |
| 426 | | ancom 460 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) |
| 427 | 426 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
| 428 | | anass 468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
| 429 | 428 | bicomi 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 430 | 427, 429 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 431 | 425, 430 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 432 | 431 | imbi1i 349 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ)) |
| 433 | 324, 432 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 434 | 431 | imbi1i 349 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ)) |
| 435 | 323, 434 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 436 | 433, 435 | mulcld 11281 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 437 | 423, 424,
436 | adddid 11285 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 438 | 437 | sumeq2dv 15738 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 439 | 196 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...𝑖) ∈ Fin) |
| 440 | 423, 424 | mulcld 11281 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
| 441 | 423, 436 | mulcld 11281 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 442 | 439, 440,
441 | fsumadd 15776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 443 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (𝑖C𝑘) = (𝑖Cℎ)) |
| 444 | | fvoveq1 7454 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐶‘(𝑘 + 1)) = (𝐶‘(ℎ + 1))) |
| 445 | 444 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐶‘(𝑘 + 1))‘𝑥) = ((𝐶‘(ℎ + 1))‘𝑥)) |
| 446 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ℎ → (𝑖 − 𝑘) = (𝑖 − ℎ)) |
| 447 | 446 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐷‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − ℎ))) |
| 448 | 447 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐷‘(𝑖 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
| 449 | 445, 448 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 450 | 443, 449 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
| 451 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎℎ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 452 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝑖Cℎ) |
| 453 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘
· |
| 454 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(ℎ + 1) |
| 455 | 345, 454 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘(ℎ + 1)) |
| 456 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘𝑥 |
| 457 | 455, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐶‘(ℎ + 1))‘𝑥) |
| 458 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 459 | 139, 458 | nfcxfr 2903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐷 |
| 460 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝑖 − ℎ) |
| 461 | 459, 460 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐷‘(𝑖 − ℎ)) |
| 462 | 461, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐷‘(𝑖 − ℎ))‘𝑥) |
| 463 | 457, 453,
462 | nfov 7461 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
| 464 | 452, 453,
463 | nfov 7461 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 465 | 450, 451,
464 | cbvsum 15731 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 466 | 465 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
| 467 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℤ) |
| 468 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℤ) |
| 469 | 233 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑖 ∈ ℤ) |
| 470 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
| 471 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘ℎ |
| 472 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(0...𝑖) |
| 473 | 471, 472 | nfel 2920 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘 ℎ ∈ (0...𝑖) |
| 474 | 470, 473 | nfan 1899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) |
| 475 | 464, 349 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ |
| 476 | 474, 475 | nfim 1896 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
| 477 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → (𝑘 ∈ (0...𝑖) ↔ ℎ ∈ (0...𝑖))) |
| 478 | 477 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)))) |
| 479 | 450 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ ↔ ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ)) |
| 480 | 478, 479 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → (((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ))) |
| 481 | 476, 480,
440 | chvarfv 2240 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
| 482 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (𝑖Cℎ) = (𝑖C(𝑗 − 1))) |
| 483 | | fvoveq1 7454 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐶‘(ℎ + 1)) = (𝐶‘((𝑗 − 1) + 1))) |
| 484 | 483 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐶‘(ℎ + 1))‘𝑥) = ((𝐶‘((𝑗 − 1) + 1))‘𝑥)) |
| 485 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑗 − 1) → (𝑖 − ℎ) = (𝑖 − (𝑗 − 1))) |
| 486 | 485 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐷‘(𝑖 − ℎ)) = (𝐷‘(𝑖 − (𝑗 − 1)))) |
| 487 | 486 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐷‘(𝑖 − ℎ))‘𝑥) = ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) |
| 488 | 484, 487 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) = (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
| 489 | 482, 488 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑗 − 1) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 490 | 467, 468,
469, 481, 489 | fsumshft 15816 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 491 | 466, 490 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 492 | | 0p1e1 12388 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
| 493 | 492 | oveq1i 7441 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 +
1)...(𝑖 + 1)) = (1...(𝑖 + 1)) |
| 494 | 493 | sumeq1i 15733 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑗 ∈ ((0
+ 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
| 495 | 494 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 496 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℤ) |
| 497 | 496 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℂ) |
| 498 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℂ) |
| 499 | 497, 498 | npcand 11624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
| 500 | 499 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → (𝐶‘((𝑗 − 1) + 1)) = (𝐶‘𝑗)) |
| 501 | 500 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
| 502 | 501 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
| 503 | 213 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℂ) |
| 504 | 503 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℂ) |
| 505 | 497 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℂ) |
| 506 | 498 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℂ) |
| 507 | 504, 505,
506 | subsub3d 11650 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 − (𝑗 − 1)) = ((𝑖 + 1) − 𝑗)) |
| 508 | 507 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘(𝑖 − (𝑗 − 1))) = (𝐷‘((𝑖 + 1) − 𝑗))) |
| 509 | 508 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
| 510 | 502, 509 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) = (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
| 511 | 510 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 512 | 511 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 513 | 512 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 514 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
| 515 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 516 | | fzfid 14014 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...(𝑖 + 1)) ∈ Fin) |
| 517 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℕ0) |
| 518 | 496 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℤ) |
| 519 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℤ) |
| 520 | 518, 519 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑗 − 1) ∈ ℤ) |
| 521 | 517, 520 | bccld 45327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
| 522 | 521 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 523 | 522 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 524 | 523 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 525 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝜑) |
| 526 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ∈
ℤ) |
| 527 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
| 528 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ∈
ℝ) |
| 529 | 496 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ) |
| 530 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℝ) |
| 531 | | 0lt1 11785 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 <
1 |
| 532 | 531 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 1) |
| 533 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ≤ 𝑗) |
| 534 | 528, 530,
529, 532, 533 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 𝑗) |
| 535 | 528, 529,
534 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ≤ 𝑗) |
| 536 | 535 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ 𝑗) |
| 537 | 529 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ) |
| 538 | 213 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℝ) |
| 539 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℝ) |
| 540 | 538, 539 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
| 541 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
| 542 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ≤ (𝑖 + 1)) |
| 543 | 542 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ (𝑖 + 1)) |
| 544 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
| 545 | 537, 540,
541, 543, 544 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ 𝑁) |
| 546 | 526, 527,
518, 536, 545 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
| 547 | 546 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
| 548 | 525, 547,
355 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 549 | 548 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 550 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
| 551 | 549, 550 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
| 552 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℤ) |
| 553 | 552 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
| 554 | 553, 518 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℤ) |
| 555 | 540, 537 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑗) ↔ 𝑗 ≤ (𝑖 + 1))) |
| 556 | 543, 555 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑗)) |
| 557 | 540, 537 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℝ) |
| 558 | 557 | leidd 11829 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ ((𝑖 + 1) − 𝑗)) |
| 559 | 529, 534 | elrpd 13074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ+) |
| 560 | 559 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ+) |
| 561 | 540, 560 | ltsubrpd 13109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < (𝑖 + 1)) |
| 562 | 557, 540,
541, 561, 544 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
| 563 | 557, 557,
541, 558, 562 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
| 564 | 557, 541,
563 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ 𝑁) |
| 565 | 526, 527,
554, 556, 564 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 566 | 565 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 567 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 568 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘((𝑖 + 1) − 𝑗) |
| 569 | 459, 568 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)) |
| 570 | 569, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ |
| 571 | 567, 570 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 572 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 + 1) − 𝑗) ∈ V |
| 573 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝑘 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁))) |
| 574 | 573 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)))) |
| 575 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝐷‘𝑘) = (𝐷‘((𝑖 + 1) − 𝑗))) |
| 576 | 575 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ)) |
| 577 | 574, 576 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ))) |
| 578 | 139 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘))) |
| 579 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘) ∈ V) |
| 580 | 578, 579 | fvmpt2d 7029 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 581 | 580 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ)) |
| 582 | 270, 581 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) |
| 583 | 571, 572,
577, 582 | vtoclf 3564 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 584 | 525, 566,
583 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 585 | 584 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 586 | 585, 550 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
| 587 | 551, 586 | mulcld 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
| 588 | 524, 587 | mulcld 11281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 589 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℤ) |
| 590 | 233 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℤ) |
| 591 | 492 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (0 +
1) |
| 592 | 591 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → 1 = (0 + 1)) |
| 593 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ ℝ) |
| 594 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℝ) |
| 595 | 185 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ≤ 𝑖) |
| 596 | 593, 213,
594, 595 | leadd1dd 11877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (0 + 1) ≤ (𝑖 + 1)) |
| 597 | 592, 596 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ≤ (𝑖 + 1)) |
| 598 | 589, 590,
597 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
| 599 | | eluz2 12884 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
| 600 | 598, 599 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘1)) |
| 601 | | eluzfz2 13572 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 602 | 600, 601 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 603 | 602 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 604 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → (𝑗 − 1) = ((𝑖 + 1) − 1)) |
| 605 | 604 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (𝑖C(𝑗 − 1)) = (𝑖C((𝑖 + 1) − 1))) |
| 606 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑖 + 1))) |
| 607 | 606 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
| 608 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑖 + 1) → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − (𝑖 + 1))) |
| 609 | 608 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
| 610 | 609 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 611 | 607, 610 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 612 | 605, 611 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑖 + 1) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 613 | 514, 515,
516, 588, 603, 612 | fsumsplit1 15781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 614 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℂ) |
| 615 | 503, 614 | pncand 11621 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 1) = 𝑖) |
| 616 | 615 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = (𝑖C𝑖)) |
| 617 | | bcnn 14351 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖C𝑖) = 1) |
| 618 | 185, 617 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C𝑖) = 1) |
| 619 | 616, 618 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = 1) |
| 620 | 503, 614 | addcld 11280 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℂ) |
| 621 | 620 | subidd 11608 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − (𝑖 + 1)) = 0) |
| 622 | 621 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
| 623 | 622 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 624 | 623 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 625 | 619, 624 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
| 626 | 625 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
| 627 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝜑) |
| 628 | | fzofzp1 13803 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁)) |
| 629 | 628 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁)) |
| 630 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) |
| 631 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝑖 + 1) |
| 632 | 345, 631 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)) |
| 633 | 632, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)):𝑋⟶ℂ |
| 634 | 630, 633 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 635 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 + 1) ∈ V |
| 636 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑖 + 1) ∈ (0...𝑁))) |
| 637 | 636 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)))) |
| 638 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝐶‘𝑘) = (𝐶‘(𝑖 + 1))) |
| 639 | 638 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘(𝑖 + 1)):𝑋⟶ℂ)) |
| 640 | 637, 639 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ))) |
| 641 | 634, 635,
640, 228 | vtoclf 3564 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 642 | 627, 629,
641 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 643 | 642 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
| 644 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝜑 ∧ 0 ∈ (0...𝑁)) |
| 645 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑘0 |
| 646 | 459, 645 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝐷‘0) |
| 647 | 646, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘0):𝑋⟶ℂ |
| 648 | 644, 647 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 649 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
| 650 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝑘 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁))) |
| 651 | 650 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁)))) |
| 652 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝐷‘𝑘) = (𝐷‘0)) |
| 653 | 652 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
| 654 | 651, 653 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ))) |
| 655 | 648, 649,
654, 582 | vtoclf 3564 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 656 | 1, 112, 655 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐷‘0):𝑋⟶ℂ) |
| 657 | 656 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 658 | 657 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘0)‘𝑥) ∈ ℂ) |
| 659 | 643, 658 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) ∈ ℂ) |
| 660 | 659 | mullidd 11279 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 661 | 626, 660 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 662 | | 1m1e0 12338 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1
− 1) = 0 |
| 663 | 662 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 664 | 3 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘0) = ℕ0 |
| 665 | 663, 664 | eqtr2i 2766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 666 | 665 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ℕ0 =
(ℤ≥‘(1 − 1))) |
| 667 | 185, 666 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (ℤ≥‘(1
− 1))) |
| 668 | | fzdifsuc2 45322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈
(ℤ≥‘(1 − 1)) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 669 | 667, 668 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 670 | 669 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)}) = (1...𝑖)) |
| 671 | 670 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 672 | 671 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 673 | 661, 672 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 674 | 513, 613,
673 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 675 | 491, 495,
674 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 676 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑖C0) |
| 677 | 345, 645 | nffv 6916 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐶‘0) |
| 678 | 677, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐶‘0)‘𝑥) |
| 679 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1) − 0) |
| 680 | 459, 679 | nffv 6916 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 0)) |
| 681 | 680, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 0))‘𝑥) |
| 682 | 678, 453,
681 | nfov 7461 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
| 683 | 676, 453,
682 | nfov 7461 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 684 | 664 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (ℤ≥‘0) =
ℕ0) |
| 685 | 185, 684 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈
(ℤ≥‘0)) |
| 686 | | eluzfz1 13571 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑖)) |
| 687 | 685, 686 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ (0...𝑖)) |
| 688 | 687 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ (0...𝑖)) |
| 689 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑖C𝑘) = (𝑖C0)) |
| 690 | 104 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘0)‘𝑥)) |
| 691 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − 0)) |
| 692 | 691 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 0))) |
| 693 | 692 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
| 694 | 690, 693 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 695 | 689, 694 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 696 | 470, 683,
439, 441, 688, 695 | fsumsplit1 15781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 697 | 620 | subid1d 11609 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 0) = (𝑖 + 1)) |
| 698 | 697 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − 0)) = (𝐷‘(𝑖 + 1))) |
| 699 | 698 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − 0))‘𝑥) = ((𝐷‘(𝑖 + 1))‘𝑥)) |
| 700 | 699 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 701 | 700 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 702 | 701 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 703 | 702 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 704 | | bcn0 14349 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ (𝑖C0) =
1) |
| 705 | 185, 704 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C0) = 1) |
| 706 | 705 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 707 | 706 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 708 | 677, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘0):𝑋⟶ℂ |
| 709 | 644, 708 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 710 | 104 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘0):𝑋⟶ℂ)) |
| 711 | 651, 710 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ))) |
| 712 | 709, 649,
711, 228 | vtoclf 3564 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 713 | 1, 112, 712 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐶‘0):𝑋⟶ℂ) |
| 714 | 713 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 715 | 714 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘0)‘𝑥) ∈ ℂ) |
| 716 | 459, 631 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)) |
| 717 | 716, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)):𝑋⟶ℂ |
| 718 | 630, 717 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 719 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘𝑘) = (𝐷‘(𝑖 + 1))) |
| 720 | 719 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘(𝑖 + 1)):𝑋⟶ℂ)) |
| 721 | 637, 720 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ))) |
| 722 | 718, 635,
721, 582 | vtoclf 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 723 | 627, 629,
722 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 724 | 723 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
| 725 | 715, 724 | mulcld 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) ∈ ℂ) |
| 726 | 725 | mullidd 11279 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 727 | 707, 726 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 728 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗 𝑖 ∈ (0..^𝑁) |
| 729 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ∈
ℤ) |
| 730 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑖 ∈ ℤ) |
| 731 | | eldifi 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (0...𝑖)) |
| 732 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
| 733 | 731, 732 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℤ) |
| 734 | 733 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ ℤ) |
| 735 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℕ0) |
| 736 | 731, 735 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ0) |
| 737 | | eldifsni 4790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≠ 0) |
| 738 | 736, 737 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → (𝑗 ∈ ℕ0 ∧ 𝑗 ≠ 0)) |
| 739 | | elnnne0 12540 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0
∧ 𝑗 ≠
0)) |
| 740 | 738, 739 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ) |
| 741 | | nnge1 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
| 742 | 740, 741 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 1 ≤ 𝑗) |
| 743 | 742 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ≤ 𝑗) |
| 744 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
| 745 | 731, 744 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≤ 𝑖) |
| 746 | 745 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ≤ 𝑖) |
| 747 | 729, 730,
734, 743, 746 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ (1...𝑖)) |
| 748 | 747 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (1...𝑖))) |
| 749 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℤ) |
| 750 | | elfzel2 13562 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑖 ∈ ℤ) |
| 751 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℤ) |
| 752 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℝ) |
| 753 | 751 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℝ) |
| 754 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 1 ∈ ℝ) |
| 755 | 531 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 0 < 1) |
| 756 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 1 ≤ 𝑗) |
| 757 | 752, 754,
753, 755, 756 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 0 < 𝑗) |
| 758 | 752, 753,
757 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 0 ≤ 𝑗) |
| 759 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≤ 𝑖) |
| 760 | 749, 750,
751, 758, 759 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (0...𝑖)) |
| 761 | 752, 757 | gtned 11396 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≠ 0) |
| 762 | | nelsn 4666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ≠ 0 → ¬ 𝑗 ∈ {0}) |
| 763 | 761, 762 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → ¬ 𝑗 ∈ {0}) |
| 764 | 760, 763 | eldifd 3962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
| 765 | 764 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
| 766 | 765 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0}))) |
| 767 | 748, 766 | impbid 212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 768 | 728, 767 | alrimi 2213 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 769 | | dfcleq 2730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑖) ∖
{0}) = (1...𝑖) ↔
∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 770 | 768, 769 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
| 771 | 770 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 772 | 771 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 773 | 727, 772 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 774 | 696, 703,
773 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 775 | 675, 774 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 776 | | fzfid 14014 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) ∈ Fin) |
| 777 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
| 778 | 765, 733 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ℤ) |
| 779 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 1 ∈ ℤ) |
| 780 | 778, 779 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑗 − 1) ∈ ℤ) |
| 781 | 777, 780 | bccld 45327 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
| 782 | 781 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 783 | 782 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 784 | 783 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 785 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋)) |
| 786 | | fzelp1 13616 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (1...(𝑖 + 1))) |
| 787 | 786 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ (1...(𝑖 + 1))) |
| 788 | 785, 787,
551 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
| 789 | 787, 586 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
| 790 | 788, 789 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
| 791 | 784, 790 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 792 | 776, 791 | fsumcl 15769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 793 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
| 794 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℤ) |
| 795 | 794 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℤ) |
| 796 | 793, 795 | bccld 45327 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
| 797 | 796 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 798 | 797 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 799 | 798 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 800 | | simpll 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝜑 ∧ 𝑖 ∈ (0..^𝑁))) |
| 801 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑥 ∈ 𝑋) |
| 802 | 760 | ssriv 3987 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑖) ⊆
(0...𝑖) |
| 803 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (1...𝑖)) |
| 804 | 802, 803 | sselid 3981 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (0...𝑖)) |
| 805 | 804 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ (0...𝑖)) |
| 806 | 800, 801,
805, 433 | syl21anc 838 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 807 | 805, 435 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 808 | 806, 807 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 809 | 799, 808 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 810 | 776, 809 | fsumcl 15769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 811 | 659, 792,
725, 810 | add4d 11490 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 812 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1)) |
| 813 | 812 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (𝑖C(𝑗 − 1)) = (𝑖C(𝑘 − 1))) |
| 814 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐶‘𝑗) = (𝐶‘𝑘)) |
| 815 | 814 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘𝑘)‘𝑥)) |
| 816 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑘 → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − 𝑘)) |
| 817 | 816 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 818 | 817 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
| 819 | 815, 818 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 820 | 813, 819 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 821 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑖C(𝑗 − 1)) |
| 822 | 347, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐶‘𝑗)‘𝑥) |
| 823 | 569, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) |
| 824 | 822, 453,
823 | nfov 7461 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
| 825 | 821, 453,
824 | nfov 7461 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
| 826 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 827 | 820, 825,
826 | cbvsum 15731 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑗 ∈
(1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 828 | 827 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 829 | 828 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 830 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 831 | 795, 830 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑘 − 1) ∈ ℤ) |
| 832 | 793, 831 | bccld 45327 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈
ℕ0) |
| 833 | 832 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 834 | 833 | adantll 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 835 | 834 | adantlr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 836 | 835, 808 | mulcld 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 837 | 776, 836,
809 | fsumadd 15776 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 838 | 837 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 839 | 833, 797 | addcomd 11463 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) = ((𝑖C𝑘) + (𝑖C(𝑘 − 1)))) |
| 840 | | bcpasc 14360 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
| 841 | 793, 795,
840 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
| 842 | 839, 841 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) = ((𝑖C(𝑘 − 1)) + (𝑖C𝑘))) |
| 843 | 842 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 844 | 843 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 845 | 844 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 846 | 835, 799,
808 | adddird 11286 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 847 | 845, 846 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 848 | 847 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 849 | 829, 838,
848 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 850 | 849 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 851 | | peano2nn0 12566 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
| 852 | 793, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
| 853 | 852, 795 | bccld 45327 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 854 | 853 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 855 | 854 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 856 | 855 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 857 | 856, 808 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 858 | 776, 857 | fsumcl 15769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 859 | 659, 725,
858 | addassd 11283 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 860 | 185, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
ℕ0) |
| 861 | | bcn0 14349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C0) =
1) |
| 862 | 860, 861 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C0) = 1) |
| 863 | 862, 700 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 864 | 863 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 865 | 864, 726 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 866 | 770 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
| 867 | 866 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) = ((0...𝑖) ∖ {0})) |
| 868 | 867 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 869 | 865, 868 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 870 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1)C0) |
| 871 | 870, 453,
682 | nfov 7461 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 872 | 197, 851 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
| 873 | 872, 199 | bccld 45327 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 874 | 873 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 875 | 874 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 876 | 875 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 877 | 876, 436 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 878 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C0)) |
| 879 | 878, 694 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 880 | 470, 871,
439, 877, 688, 879 | fsumsplit1 15781 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 881 | 880 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 882 | 869, 881 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 883 | 882 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 884 | | bcnn 14351 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 885 | 860, 884 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 886 | 885 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 887 | 886 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 888 | 622 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
| 889 | 888 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
| 890 | 657, 889 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
| 891 | 890 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
| 892 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 893 | 891, 892 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) ∈ ℂ) |
| 894 | 643, 893 | mulcld 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) ∈ ℂ) |
| 895 | 894 | mullidd 11279 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 896 | 624 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 897 | 887, 895,
896 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 898 | | fzdifsuc 13624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘0) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 899 | 685, 898 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 900 | 899 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 901 | 900 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 902 | 897, 901 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 903 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖 + 1)C(𝑖 + 1)) |
| 904 | 632, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐶‘(𝑖 + 1))‘𝑥) |
| 905 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝑖 + 1) − (𝑖 + 1)) |
| 906 | 459, 905 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − (𝑖 + 1))) |
| 907 | 906, 456 | nffv 6916 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) |
| 908 | 904, 453,
907 | nfov 7461 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 909 | 903, 453,
908 | nfov 7461 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 910 | | fzfid 14014 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...(𝑖 + 1)) ∈ Fin) |
| 911 | 860 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈
ℕ0) |
| 912 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ∈ ℤ) |
| 913 | 912 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℤ) |
| 914 | 911, 913 | bccld 45327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 915 | 914 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 916 | 915 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 917 | 916 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 918 | 627 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
| 919 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℤ) |
| 920 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
| 921 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 0 ≤ 𝑘) |
| 922 | 921 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ 𝑘) |
| 923 | 913 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℝ) |
| 924 | 911 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
| 925 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
| 926 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ≤ (𝑖 + 1)) |
| 927 | 926 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ (𝑖 + 1)) |
| 928 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
| 929 | 923, 924,
925, 927, 928 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ 𝑁) |
| 930 | 919, 920,
913, 922, 929 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
| 931 | 930 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
| 932 | 918, 931,
228 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 933 | 932 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 934 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
| 935 | 933, 934 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 936 | 918 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
| 937 | 590 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
| 938 | 937, 913 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
| 939 | 924, 923 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
| 940 | 927, 939 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
| 941 | 924, 923 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
| 942 | 925, 923 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ∈ ℝ) |
| 943 | 925, 171,
246 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) ∈ ℝ) |
| 944 | 924, 925,
923, 928 | lesub1dd 11879 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
| 945 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℝ) |
| 946 | 945, 923,
925, 922 | lesub2dd 11880 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
| 947 | 941, 942,
943, 944, 946 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 0)) |
| 948 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) = 𝑁) |
| 949 | 947, 948 | breqtrd 5169 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
| 950 | 919, 920,
938, 940, 949 | elfzd 13555 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 951 | 950 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 952 | 951 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 953 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝐷‘𝑗) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 954 | 953 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝐷‘𝑗):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 955 | 310, 954 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
| 956 | 459, 346 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘𝑗) |
| 957 | 956, 348,
349 | nff 6732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘𝑗):𝑋⟶ℂ |
| 958 | 343, 957 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
| 959 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑗 → (𝐷‘𝑘) = (𝐷‘𝑗)) |
| 960 | 959 | feq1d 6720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑗 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘𝑗):𝑋⟶ℂ)) |
| 961 | 266, 960 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ))) |
| 962 | 958, 961,
582 | chvarfv 2240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
| 963 | 308, 955,
962 | vtocl 3558 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 964 | 936, 952,
963 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 965 | 964, 934 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 966 | 935, 965 | mulcld 11281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 967 | 917, 966 | mulcld 11281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 968 | 860, 684 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘0)) |
| 969 | | eluzfz2 13572 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘0) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 970 | 968, 969 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 971 | 970 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 972 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C(𝑖 + 1))) |
| 973 | 638 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
| 974 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − (𝑖 + 1))) |
| 975 | 974 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
| 976 | 975 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 977 | 973, 976 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 978 | 972, 977 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑖 + 1) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 979 | 470, 909,
910, 967, 971, 978 | fsumsplit1 15781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 980 | 979 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 981 | 883, 902,
980 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 982 | 850, 859,
981 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 983 | 775, 811,
982 | 3eqtrd 2781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 984 | 438, 442,
983 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 985 | 984 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 986 | 422, 985 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 987 | 986 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 988 | 189, 191,
987 | 3eqtrd 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 989 | 178, 179,
182, 988 | syl21anc 838 |
. . . . . 6
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 990 | 989 | 3exp 1120 |
. . . . 5
⊢ (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
| 991 | 34, 47, 60, 73, 177, 990 | fzind2 13824 |
. . . 4
⊢ (𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
| 992 | 21, 991 | vtoclg 3554 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
| 993 | 2, 6, 992 | sylc 65 |
. 2
⊢ (𝜑 → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
| 994 | 1, 993 | mpd 15 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |