MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem2a Structured version   Visualization version   GIF version

Theorem prodmolem2a 15282
Description: Lemma for prodmo 15284. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmo.3 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
prodmolem2.4 𝐻 = (𝑗 ∈ ℕ ↦ (𝐾𝑗) / 𝑘𝐵)
prodmolem2.5 (𝜑𝑁 ∈ ℕ)
prodmolem2.6 (𝜑𝑀 ∈ ℤ)
prodmolem2.7 (𝜑𝐴 ⊆ (ℤ𝑀))
prodmolem2.8 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
prodmolem2.9 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Assertion
Ref Expression
prodmolem2a (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑗   𝐵,𝑗   𝑓,𝑗,𝑘   𝑗,𝐺   𝑗,𝑘,𝜑   𝑗,𝐾,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓,𝑗)   𝐺(𝑓,𝑘)   𝐻(𝑓,𝑗,𝑘)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem prodmolem2a
Dummy variables 𝑛 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodmo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2 prodmo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 prodmolem2.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
4 prodmolem2.9 . . . . . . 7 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 fzfid 13335 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
6 prodmolem2.8 . . . . . . . . . . 11 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
75, 6hasheqf1od 13708 . . . . . . . . . 10 (𝜑 → (♯‘(1...𝑁)) = (♯‘𝐴))
8 prodmolem2.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
98nnnn0d 11949 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
10 hashfz1 13700 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
127, 11eqtr3d 2858 . . . . . . . . 9 (𝜑 → (♯‘𝐴) = 𝑁)
1312oveq2d 7166 . . . . . . . 8 (𝜑 → (1...(♯‘𝐴)) = (1...𝑁))
14 isoeq4 7067 . . . . . . . 8 ((1...(♯‘𝐴)) = (1...𝑁) → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
1513, 14syl 17 . . . . . . 7 (𝜑 → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
164, 15mpbid 234 . . . . . 6 (𝜑𝐾 Isom < , < ((1...𝑁), 𝐴))
17 isof1o 7070 . . . . . 6 (𝐾 Isom < , < ((1...𝑁), 𝐴) → 𝐾:(1...𝑁)–1-1-onto𝐴)
18 f1of 6610 . . . . . 6 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
1916, 17, 183syl 18 . . . . 5 (𝜑𝐾:(1...𝑁)⟶𝐴)
20 nnuz 12275 . . . . . . 7 ℕ = (ℤ‘1)
218, 20eleqtrdi 2923 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
22 eluzfz2 12909 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2321, 22syl 17 . . . . 5 (𝜑𝑁 ∈ (1...𝑁))
2419, 23ffvelrnd 6847 . . . 4 (𝜑 → (𝐾𝑁) ∈ 𝐴)
253, 24sseldd 3968 . . 3 (𝜑 → (𝐾𝑁) ∈ (ℤ𝑀))
263sselda 3967 . . . . . 6 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
2716, 17syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
28 f1ocnvfv2 7028 . . . . . . . . 9 ((𝐾:(1...𝑁)–1-1-onto𝐴𝑗𝐴) → (𝐾‘(𝐾𝑗)) = 𝑗)
2927, 28sylan 582 . . . . . . . 8 ((𝜑𝑗𝐴) → (𝐾‘(𝐾𝑗)) = 𝑗)
30 f1ocnv 6622 . . . . . . . . . . . 12 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:𝐴1-1-onto→(1...𝑁))
31 f1of 6610 . . . . . . . . . . . 12 (𝐾:𝐴1-1-onto→(1...𝑁) → 𝐾:𝐴⟶(1...𝑁))
3227, 30, 313syl 18 . . . . . . . . . . 11 (𝜑𝐾:𝐴⟶(1...𝑁))
3332ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑗𝐴) → (𝐾𝑗) ∈ (1...𝑁))
34 elfzle2 12905 . . . . . . . . . 10 ((𝐾𝑗) ∈ (1...𝑁) → (𝐾𝑗) ≤ 𝑁)
3533, 34syl 17 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐾𝑗) ≤ 𝑁)
3616adantr 483 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐾 Isom < , < ((1...𝑁), 𝐴))
37 fzssuz 12942 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (ℤ‘1)
38 uzssz 12258 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
39 zssre 11982 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
4038, 39sstri 3976 . . . . . . . . . . . . 13 (ℤ‘1) ⊆ ℝ
4137, 40sstri 3976 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℝ
42 ressxr 10679 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4341, 42sstri 3976 . . . . . . . . . . 11 (1...𝑁) ⊆ ℝ*
4443a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → (1...𝑁) ⊆ ℝ*)
45 uzssz 12258 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ ℤ
4645, 39sstri 3976 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℝ
4746, 42sstri 3976 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℝ*
483, 47sstrdi 3979 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
4948adantr 483 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐴 ⊆ ℝ*)
5023adantr 483 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑁 ∈ (1...𝑁))
51 leisorel 13812 . . . . . . . . . 10 ((𝐾 Isom < , < ((1...𝑁), 𝐴) ∧ ((1...𝑁) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝐾𝑗) ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → ((𝐾𝑗) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑗)) ≤ (𝐾𝑁)))
5236, 44, 49, 33, 50, 51syl122anc 1375 . . . . . . . . 9 ((𝜑𝑗𝐴) → ((𝐾𝑗) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑗)) ≤ (𝐾𝑁)))
5335, 52mpbid 234 . . . . . . . 8 ((𝜑𝑗𝐴) → (𝐾‘(𝐾𝑗)) ≤ (𝐾𝑁))
5429, 53eqbrtrrd 5083 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗 ≤ (𝐾𝑁))
553, 45sstrdi 3979 . . . . . . . . 9 (𝜑𝐴 ⊆ ℤ)
5655sselda 3967 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 ∈ ℤ)
57 eluzelz 12247 . . . . . . . . . 10 ((𝐾𝑁) ∈ (ℤ𝑀) → (𝐾𝑁) ∈ ℤ)
5825, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐾𝑁) ∈ ℤ)
5958adantr 483 . . . . . . . 8 ((𝜑𝑗𝐴) → (𝐾𝑁) ∈ ℤ)
60 eluz 12251 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → ((𝐾𝑁) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐾𝑁)))
6156, 59, 60syl2anc 586 . . . . . . 7 ((𝜑𝑗𝐴) → ((𝐾𝑁) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐾𝑁)))
6254, 61mpbird 259 . . . . . 6 ((𝜑𝑗𝐴) → (𝐾𝑁) ∈ (ℤ𝑗))
63 elfzuzb 12896 . . . . . 6 (𝑗 ∈ (𝑀...(𝐾𝑁)) ↔ (𝑗 ∈ (ℤ𝑀) ∧ (𝐾𝑁) ∈ (ℤ𝑗)))
6426, 62, 63sylanbrc 585 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 ∈ (𝑀...(𝐾𝑁)))
6564ex 415 . . . 4 (𝜑 → (𝑗𝐴𝑗 ∈ (𝑀...(𝐾𝑁))))
6665ssrdv 3973 . . 3 (𝜑𝐴 ⊆ (𝑀...(𝐾𝑁)))
671, 2, 25, 66fprodcvg 15278 . 2 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘(𝐾𝑁)))
68 mulid2 10634 . . . . 5 (𝑚 ∈ ℂ → (1 · 𝑚) = 𝑚)
6968adantl 484 . . . 4 ((𝜑𝑚 ∈ ℂ) → (1 · 𝑚) = 𝑚)
70 mulid1 10633 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
7170adantl 484 . . . 4 ((𝜑𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
72 mulcl 10615 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑚 · 𝑥) ∈ ℂ)
7372adantl 484 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑚 · 𝑥) ∈ ℂ)
74 1cnd 10630 . . . 4 (𝜑 → 1 ∈ ℂ)
7523, 13eleqtrrd 2916 . . . 4 (𝜑𝑁 ∈ (1...(♯‘𝐴)))
76 iftrue 4473 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
7776adantl 484 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
7877, 2eqeltrd 2913 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
7978ex 415 . . . . . . . 8 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
80 iffalse 4476 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
81 ax-1cn 10589 . . . . . . . . 9 1 ∈ ℂ
8280, 81eqeltrdi 2921 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8379, 82pm2.61d1 182 . . . . . . 7 (𝜑 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8483adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8584, 1fmptd 6873 . . . . 5 (𝜑𝐹:ℤ⟶ℂ)
86 elfzelz 12902 . . . . 5 (𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴))) → 𝑚 ∈ ℤ)
87 ffvelrn 6844 . . . . 5 ((𝐹:ℤ⟶ℂ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) ∈ ℂ)
8885, 86, 87syl2an 597 . . . 4 ((𝜑𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴)))) → (𝐹𝑚) ∈ ℂ)
89 fveqeq2 6674 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) = 1 ↔ (𝐹𝑚) = 1))
90 fzssz 12903 . . . . . . . . 9 (𝑀...(𝐾‘(♯‘𝐴))) ⊆ ℤ
91 eldifi 4103 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))))
9290, 91sseldi 3965 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ ℤ)
93 eldifn 4104 . . . . . . . . . 10 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → ¬ 𝑘𝐴)
9493, 80syl 17 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
9594, 81eqeltrdi 2921 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
961fvmpt2 6774 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
9792, 95, 96syl2anc 586 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
9897, 94eqtrd 2856 . . . . . 6 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = 1)
9989, 98vtoclga 3574 . . . . 5 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑚) = 1)
10099adantl 484 . . . 4 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = 1)
101 isof1o 7070 . . . . . . . 8 (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐾:(1...(♯‘𝐴))–1-1-onto𝐴)
102 f1of 6610 . . . . . . . 8 (𝐾:(1...(♯‘𝐴))–1-1-onto𝐴𝐾:(1...(♯‘𝐴))⟶𝐴)
1034, 101, 1023syl 18 . . . . . . 7 (𝜑𝐾:(1...(♯‘𝐴))⟶𝐴)
104103ffvelrnda 6846 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ 𝐴)
105104iftrued 4475 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) = (𝐾𝑥) / 𝑘𝐵)
10655adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ ℤ)
107106, 104sseldd 3968 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ ℤ)
108 nfv 1911 . . . . . . . . 9 𝑘𝜑
109 nfv 1911 . . . . . . . . . . 11 𝑘(𝐾𝑥) ∈ 𝐴
110 nfcsb1v 3907 . . . . . . . . . . 11 𝑘(𝐾𝑥) / 𝑘𝐵
111 nfcv 2977 . . . . . . . . . . 11 𝑘1
112109, 110, 111nfif 4496 . . . . . . . . . 10 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1)
113112nfel1 2994 . . . . . . . . 9 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ
114108, 113nfim 1893 . . . . . . . 8 𝑘(𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)
115 fvex 6678 . . . . . . . 8 (𝐾𝑥) ∈ V
116 eleq1 2900 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → (𝑘𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
117 csbeq1a 3897 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → 𝐵 = (𝐾𝑥) / 𝑘𝐵)
118116, 117ifbieq1d 4490 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → if(𝑘𝐴, 𝐵, 1) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
119118eleq1d 2897 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (if(𝑘𝐴, 𝐵, 1) ∈ ℂ ↔ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ))
120119imbi2d 343 . . . . . . . 8 (𝑘 = (𝐾𝑥) → ((𝜑 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ) ↔ (𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)))
121114, 115, 120, 83vtoclf 3559 . . . . . . 7 (𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)
122121adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)
123 eleq1 2900 . . . . . . . 8 (𝑛 = (𝐾𝑥) → (𝑛𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
124 csbeq1 3886 . . . . . . . 8 (𝑛 = (𝐾𝑥) → 𝑛 / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
125123, 124ifbieq1d 4490 . . . . . . 7 (𝑛 = (𝐾𝑥) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
126 nfcv 2977 . . . . . . . . 9 𝑛if(𝑘𝐴, 𝐵, 1)
127 nfv 1911 . . . . . . . . . 10 𝑘 𝑛𝐴
128 nfcsb1v 3907 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
129127, 128, 111nfif 4496 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1)
130 eleq1 2900 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
131 csbeq1a 3897 . . . . . . . . . 10 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
132130, 131ifbieq1d 4490 . . . . . . . . 9 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 1) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
133126, 129, 132cbvmpt 5160 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
1341, 133eqtri 2844 . . . . . . 7 𝐹 = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 1))
135125, 134fvmptg 6761 . . . . . 6 (((𝐾𝑥) ∈ ℤ ∧ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
136107, 122, 135syl2anc 586 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
137 elfznn 12930 . . . . . 6 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
138105, 122eqeltrrd 2914 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ)
139 fveq2 6665 . . . . . . . 8 (𝑗 = 𝑥 → (𝐾𝑗) = (𝐾𝑥))
140139csbeq1d 3887 . . . . . . 7 (𝑗 = 𝑥(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
141 prodmolem2.4 . . . . . . 7 𝐻 = (𝑗 ∈ ℕ ↦ (𝐾𝑗) / 𝑘𝐵)
142140, 141fvmptg 6761 . . . . . 6 ((𝑥 ∈ ℕ ∧ (𝐾𝑥) / 𝑘𝐵 ∈ ℂ) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
143137, 138, 142syl2an2 684 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
144105, 136, 1433eqtr4rd 2867 . . . 4 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐹‘(𝐾𝑥)))
14569, 71, 73, 74, 4, 75, 3, 88, 100, 144seqcoll 13816 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘(𝐾𝑁)) = (seq1( · , 𝐻)‘𝑁))
146 prodmo.3 . . . 4 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
1478, 8jca 514 . . . 4 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ))
1481, 2, 146, 141, 147, 6, 27prodmolem3 15281 . . 3 (𝜑 → (seq1( · , 𝐺)‘𝑁) = (seq1( · , 𝐻)‘𝑁))
149145, 148eqtr4d 2859 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘(𝐾𝑁)) = (seq1( · , 𝐺)‘𝑁))
15067, 149breqtrd 5085 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  csb 3883  cdif 3933  wss 3936  ifcif 4467   class class class wbr 5059  cmpt 5139  ccnv 5549  wf 6346  1-1-ontowf1o 6349  cfv 6350   Isom wiso 6351  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  1c1 10532   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  seqcseq 13363  chash 13684  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839
This theorem is referenced by:  prodmolem2  15283  zprod  15285
  Copyright terms: Public domain W3C validator