| Step | Hyp | Ref
| Expression |
| 1 | | csbeq1 3902 |
. . 3
⊢ (𝑎 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
| 2 | | csbeq1 3902 |
. . 3
⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
| 3 | | csbeq1 3902 |
. . 3
⊢ (𝑎 = 𝐵 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| 4 | | monotuz.3 |
. . . 4
⊢ 𝐻 =
(ℤ≥‘𝐼) |
| 5 | | uzssz 12899 |
. . . . 5
⊢
(ℤ≥‘𝐼) ⊆ ℤ |
| 6 | | zssre 12620 |
. . . . 5
⊢ ℤ
⊆ ℝ |
| 7 | 5, 6 | sstri 3993 |
. . . 4
⊢
(ℤ≥‘𝐼) ⊆ ℝ |
| 8 | 4, 7 | eqsstri 4030 |
. . 3
⊢ 𝐻 ⊆
ℝ |
| 9 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ 𝐻) |
| 10 | | nfcsb1v 3923 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
| 11 | 10 | nfel1 2922 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ |
| 12 | 9, 11 | nfim 1896 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
| 13 | | eleq1 2829 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻)) |
| 14 | 13 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ 𝑎 ∈ 𝐻))) |
| 15 | | csbeq1a 3913 |
. . . . . 6
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
| 16 | 15 | eleq1d 2826 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝐶 ∈ ℝ ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ)) |
| 17 | 14, 16 | imbi12d 344 |
. . . 4
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ))) |
| 18 | | monotuz.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) |
| 19 | 12, 17, 18 | chvarfv 2240 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
| 20 | | simpl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑎 < 𝑏) → (𝜑 ∧ 𝑎 ∈ 𝐻)) |
| 21 | 20 | adantlrr 721 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → (𝜑 ∧ 𝑎 ∈ 𝐻)) |
| 22 | 4, 5 | eqsstri 4030 |
. . . . . . 7
⊢ 𝐻 ⊆
ℤ |
| 23 | | simplrl 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ 𝐻) |
| 24 | 22, 23 | sselid 3981 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ) |
| 25 | | simplrr 778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ 𝐻) |
| 26 | 22, 25 | sselid 3981 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ) |
| 27 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
| 28 | | csbeq1 3902 |
. . . . . . . . 9
⊢ (𝑐 = (𝑎 + 1) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
| 29 | 28 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑐 = (𝑎 + 1) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
| 30 | 29 | imbi2d 340 |
. . . . . . 7
⊢ (𝑐 = (𝑎 + 1) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶))) |
| 31 | | csbeq1 3902 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ⦋𝑐 / 𝑥⦌𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
| 32 | 31 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶)) |
| 33 | 32 | imbi2d 340 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶))) |
| 34 | | csbeq1 3902 |
. . . . . . . . 9
⊢ (𝑐 = (𝑑 + 1) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 35 | 34 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑐 = (𝑑 + 1) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶)) |
| 36 | 35 | imbi2d 340 |
. . . . . . 7
⊢ (𝑐 = (𝑑 + 1) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
| 37 | | csbeq1 3902 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ⦋𝑐 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
| 38 | 37 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
| 39 | 38 | imbi2d 340 |
. . . . . . 7
⊢ (𝑐 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶))) |
| 40 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → (𝑦 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻)) |
| 41 | 40 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → ((𝜑 ∧ 𝑦 ∈ 𝐻) ↔ (𝜑 ∧ 𝑎 ∈ 𝐻))) |
| 42 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 43 | | monotuz.5 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐹) |
| 44 | 42, 43 | csbie 3934 |
. . . . . . . . . . 11
⊢
⦋𝑦 /
𝑥⦌𝐶 = 𝐹 |
| 45 | | csbeq1 3902 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
| 46 | 44, 45 | eqtr3id 2791 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → 𝐹 = ⦋𝑎 / 𝑥⦌𝐶) |
| 47 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝑦 + 1) ∈ V |
| 48 | | monotuz.4 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + 1) → 𝐶 = 𝐺) |
| 49 | 47, 48 | csbie 3934 |
. . . . . . . . . . 11
⊢
⦋(𝑦 +
1) / 𝑥⦌𝐶 = 𝐺 |
| 50 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑎 → (𝑦 + 1) = (𝑎 + 1)) |
| 51 | 50 | csbeq1d 3903 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ⦋(𝑦 + 1) / 𝑥⦌𝐶 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
| 52 | 49, 51 | eqtr3id 2791 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → 𝐺 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
| 53 | 46, 52 | breq12d 5156 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝐹 < 𝐺 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
| 54 | 41, 53 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → (((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶))) |
| 55 | | monotuz.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) |
| 56 | 54, 55 | vtoclg 3554 |
. . . . . . 7
⊢ (𝑎 ∈ ℤ → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
| 57 | 19 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
| 58 | | simp2l 1200 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝜑) |
| 59 | | zre 12617 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
| 60 | 59 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 ∈ ℝ) |
| 61 | | zre 12617 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ ℤ → 𝑑 ∈
ℝ) |
| 62 | 61 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑑 ∈ ℝ) |
| 63 | | simp3 1139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 < 𝑑) |
| 64 | 60, 62, 63 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 ≤ 𝑑) |
| 65 | 64 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ≤ 𝑑) |
| 66 | | simp11 1204 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ ℤ) |
| 67 | | simp12 1205 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ ℤ) |
| 68 | | eluz 12892 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑑 ∈
(ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑑)) |
| 69 | 66, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 ∈ (ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑑)) |
| 70 | 65, 69 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ (ℤ≥‘𝑎)) |
| 71 | | simp2r 1201 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ 𝐻) |
| 72 | 71, 4 | eleqtrdi 2851 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ (ℤ≥‘𝐼)) |
| 73 | | uztrn 12896 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈
(ℤ≥‘𝑎) ∧ 𝑎 ∈ (ℤ≥‘𝐼)) → 𝑑 ∈ (ℤ≥‘𝐼)) |
| 74 | 70, 72, 73 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ (ℤ≥‘𝐼)) |
| 75 | 74, 4 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ 𝐻) |
| 76 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝜑 ∧ 𝑑 ∈ 𝐻) |
| 77 | | nfcsb1v 3923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑑 / 𝑥⦌𝐶 |
| 78 | 77 | nfel1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ |
| 79 | 76, 78 | nfim 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
| 80 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑑 → (𝑥 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻)) |
| 81 | 80 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑑 → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ 𝑑 ∈ 𝐻))) |
| 82 | | csbeq1a 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑑 → 𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
| 83 | 82 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑑 → (𝐶 ∈ ℝ ↔ ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ)) |
| 84 | 81, 83 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ))) |
| 85 | 79, 84, 18 | chvarfv 2240 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
| 86 | 58, 75, 85 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
| 87 | | peano2uz 12943 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈
(ℤ≥‘𝐼) → (𝑑 + 1) ∈
(ℤ≥‘𝐼)) |
| 88 | 74, 87 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 + 1) ∈
(ℤ≥‘𝐼)) |
| 89 | 88, 4 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 + 1) ∈ 𝐻) |
| 90 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝜑 ∧ (𝑑 + 1) ∈ 𝐻) |
| 91 | | nfcsb1v 3923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋(𝑑 + 1) / 𝑥⦌𝐶 |
| 92 | 91 | nfel1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ |
| 93 | 90, 92 | nfim 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
| 94 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝑑 + 1) ∈ V |
| 95 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑑 + 1) → (𝑥 ∈ 𝐻 ↔ (𝑑 + 1) ∈ 𝐻)) |
| 96 | 95 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑑 + 1) → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ (𝑑 + 1) ∈ 𝐻))) |
| 97 | | csbeq1a 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑑 + 1) → 𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 98 | 97 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑑 + 1) → (𝐶 ∈ ℝ ↔ ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ)) |
| 99 | 96, 98 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑑 + 1) → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ))) |
| 100 | 93, 94, 99, 18 | vtoclf 3564 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
| 101 | 58, 89, 100 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
| 102 | | simp3 1139 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) |
| 103 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 104 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → (𝑦 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻)) |
| 105 | 104 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → ((𝜑 ∧ 𝑦 ∈ 𝐻) ↔ (𝜑 ∧ 𝑑 ∈ 𝐻))) |
| 106 | | csbeq1 3902 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
| 107 | 44, 106 | eqtr3id 2791 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 𝐹 = ⦋𝑑 / 𝑥⦌𝐶) |
| 108 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑑 → (𝑦 + 1) = (𝑑 + 1)) |
| 109 | 108 | csbeq1d 3903 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ⦋(𝑦 + 1) / 𝑥⦌𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 110 | 49, 109 | eqtr3id 2791 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 𝐺 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 111 | 107, 110 | breq12d 5156 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → (𝐹 < 𝐺 ↔ ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶)) |
| 112 | 105, 111 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → (((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) ↔ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
| 113 | 103, 112,
55 | chvarfv 2240 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 114 | 58, 75, 113 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 115 | 57, 86, 101, 102, 114 | lttrd 11422 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
| 116 | 115 | 3exp 1120 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶 → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
| 117 | 116 | a2d 29 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
| 118 | 30, 33, 36, 39, 56, 117 | uzind2 12711 |
. . . . . 6
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑎 < 𝑏) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
| 119 | 24, 26, 27, 118 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
| 120 | 21, 119 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶) |
| 121 | 120 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) → (𝑎 < 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
| 122 | 1, 2, 3, 8, 19, 121 | ltord1 11789 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶)) |
| 123 | | nfcvd 2906 |
. . . . 5
⊢ (𝐴 ∈ 𝐻 → Ⅎ𝑥𝐷) |
| 124 | | monotuz.6 |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| 125 | 123, 124 | csbiegf 3932 |
. . . 4
⊢ (𝐴 ∈ 𝐻 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| 126 | | nfcvd 2906 |
. . . . 5
⊢ (𝐵 ∈ 𝐻 → Ⅎ𝑥𝐸) |
| 127 | | monotuz.7 |
. . . . 5
⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
| 128 | 126, 127 | csbiegf 3932 |
. . . 4
⊢ (𝐵 ∈ 𝐻 → ⦋𝐵 / 𝑥⦌𝐶 = 𝐸) |
| 129 | 125, 128 | breqan12d 5159 |
. . 3
⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶 ↔ 𝐷 < 𝐸)) |
| 130 | 129 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶 ↔ 𝐷 < 𝐸)) |
| 131 | 122, 130 | bitrd 279 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ 𝐷 < 𝐸)) |