Step | Hyp | Ref
| Expression |
1 | | csbeq1 3840 |
. . 3
⊢ (𝑎 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
2 | | csbeq1 3840 |
. . 3
⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
3 | | csbeq1 3840 |
. . 3
⊢ (𝑎 = 𝐵 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
4 | | monotuz.3 |
. . . 4
⊢ 𝐻 =
(ℤ≥‘𝐼) |
5 | | uzssz 12614 |
. . . . 5
⊢
(ℤ≥‘𝐼) ⊆ ℤ |
6 | | zssre 12337 |
. . . . 5
⊢ ℤ
⊆ ℝ |
7 | 5, 6 | sstri 3935 |
. . . 4
⊢
(ℤ≥‘𝐼) ⊆ ℝ |
8 | 4, 7 | eqsstri 3960 |
. . 3
⊢ 𝐻 ⊆
ℝ |
9 | | nfv 1921 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ 𝐻) |
10 | | nfcsb1v 3862 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
11 | 10 | nfel1 2925 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ |
12 | 9, 11 | nfim 1903 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
13 | | eleq1 2828 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻)) |
14 | 13 | anbi2d 629 |
. . . . 5
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ 𝑎 ∈ 𝐻))) |
15 | | csbeq1a 3851 |
. . . . . 6
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
16 | 15 | eleq1d 2825 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝐶 ∈ ℝ ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ)) |
17 | 14, 16 | imbi12d 345 |
. . . 4
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ))) |
18 | | monotuz.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) |
19 | 12, 17, 18 | chvarfv 2237 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
20 | | simpl 483 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑎 < 𝑏) → (𝜑 ∧ 𝑎 ∈ 𝐻)) |
21 | 20 | adantlrr 718 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → (𝜑 ∧ 𝑎 ∈ 𝐻)) |
22 | 4, 5 | eqsstri 3960 |
. . . . . . 7
⊢ 𝐻 ⊆
ℤ |
23 | | simplrl 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ 𝐻) |
24 | 22, 23 | sselid 3924 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ) |
25 | | simplrr 775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ 𝐻) |
26 | 22, 25 | sselid 3924 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ) |
27 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
28 | | csbeq1 3840 |
. . . . . . . . 9
⊢ (𝑐 = (𝑎 + 1) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
29 | 28 | breq2d 5091 |
. . . . . . . 8
⊢ (𝑐 = (𝑎 + 1) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
30 | 29 | imbi2d 341 |
. . . . . . 7
⊢ (𝑐 = (𝑎 + 1) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶))) |
31 | | csbeq1 3840 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ⦋𝑐 / 𝑥⦌𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
32 | 31 | breq2d 5091 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶)) |
33 | 32 | imbi2d 341 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶))) |
34 | | csbeq1 3840 |
. . . . . . . . 9
⊢ (𝑐 = (𝑑 + 1) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
35 | 34 | breq2d 5091 |
. . . . . . . 8
⊢ (𝑐 = (𝑑 + 1) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶)) |
36 | 35 | imbi2d 341 |
. . . . . . 7
⊢ (𝑐 = (𝑑 + 1) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
37 | | csbeq1 3840 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ⦋𝑐 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
38 | 37 | breq2d 5091 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
39 | 38 | imbi2d 341 |
. . . . . . 7
⊢ (𝑐 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑐 / 𝑥⦌𝐶) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶))) |
40 | | eleq1 2828 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → (𝑦 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻)) |
41 | 40 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → ((𝜑 ∧ 𝑦 ∈ 𝐻) ↔ (𝜑 ∧ 𝑎 ∈ 𝐻))) |
42 | | vex 3435 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
43 | | monotuz.5 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐹) |
44 | 42, 43 | csbie 3873 |
. . . . . . . . . . 11
⊢
⦋𝑦 /
𝑥⦌𝐶 = 𝐹 |
45 | | csbeq1 3840 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
46 | 44, 45 | eqtr3id 2794 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → 𝐹 = ⦋𝑎 / 𝑥⦌𝐶) |
47 | | ovex 7305 |
. . . . . . . . . . . 12
⊢ (𝑦 + 1) ∈ V |
48 | | monotuz.4 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + 1) → 𝐶 = 𝐺) |
49 | 47, 48 | csbie 3873 |
. . . . . . . . . . 11
⊢
⦋(𝑦 +
1) / 𝑥⦌𝐶 = 𝐺 |
50 | | oveq1 7279 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑎 → (𝑦 + 1) = (𝑎 + 1)) |
51 | 50 | csbeq1d 3841 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ⦋(𝑦 + 1) / 𝑥⦌𝐶 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
52 | 49, 51 | eqtr3id 2794 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → 𝐺 = ⦋(𝑎 + 1) / 𝑥⦌𝐶) |
53 | 46, 52 | breq12d 5092 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝐹 < 𝐺 ↔ ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
54 | 41, 53 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → (((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶))) |
55 | | monotuz.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) |
56 | 54, 55 | vtoclg 3504 |
. . . . . . 7
⊢ (𝑎 ∈ ℤ → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑎 + 1) / 𝑥⦌𝐶)) |
57 | 19 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 ∈ ℝ) |
58 | | simp2l 1198 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝜑) |
59 | | zre 12334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
60 | 59 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 ∈ ℝ) |
61 | | zre 12334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ ℤ → 𝑑 ∈
ℝ) |
62 | 61 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑑 ∈ ℝ) |
63 | | simp3 1137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 < 𝑑) |
64 | 60, 62, 63 | ltled 11134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → 𝑎 ≤ 𝑑) |
65 | 64 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ≤ 𝑑) |
66 | | simp11 1202 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ ℤ) |
67 | | simp12 1203 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ ℤ) |
68 | | eluz 12607 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑑 ∈
(ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑑)) |
69 | 66, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 ∈ (ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑑)) |
70 | 65, 69 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ (ℤ≥‘𝑎)) |
71 | | simp2r 1199 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ 𝐻) |
72 | 71, 4 | eleqtrdi 2851 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑎 ∈ (ℤ≥‘𝐼)) |
73 | | uztrn 12611 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈
(ℤ≥‘𝑎) ∧ 𝑎 ∈ (ℤ≥‘𝐼)) → 𝑑 ∈ (ℤ≥‘𝐼)) |
74 | 70, 72, 73 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ (ℤ≥‘𝐼)) |
75 | 74, 4 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → 𝑑 ∈ 𝐻) |
76 | | nfv 1921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝜑 ∧ 𝑑 ∈ 𝐻) |
77 | | nfcsb1v 3862 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑑 / 𝑥⦌𝐶 |
78 | 77 | nfel1 2925 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ |
79 | 76, 78 | nfim 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
80 | | eleq1 2828 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑑 → (𝑥 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻)) |
81 | 80 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑑 → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ 𝑑 ∈ 𝐻))) |
82 | | csbeq1a 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑑 → 𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
83 | 82 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑑 → (𝐶 ∈ ℝ ↔ ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ)) |
84 | 81, 83 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ))) |
85 | 79, 84, 18 | chvarfv 2237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
86 | 58, 75, 85 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑑 / 𝑥⦌𝐶 ∈ ℝ) |
87 | | peano2uz 12652 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈
(ℤ≥‘𝐼) → (𝑑 + 1) ∈
(ℤ≥‘𝐼)) |
88 | 74, 87 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 + 1) ∈
(ℤ≥‘𝐼)) |
89 | 88, 4 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → (𝑑 + 1) ∈ 𝐻) |
90 | | nfv 1921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝜑 ∧ (𝑑 + 1) ∈ 𝐻) |
91 | | nfcsb1v 3862 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋(𝑑 + 1) / 𝑥⦌𝐶 |
92 | 91 | nfel1 2925 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ |
93 | 90, 92 | nfim 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
94 | | ovex 7305 |
. . . . . . . . . . . 12
⊢ (𝑑 + 1) ∈ V |
95 | | eleq1 2828 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑑 + 1) → (𝑥 ∈ 𝐻 ↔ (𝑑 + 1) ∈ 𝐻)) |
96 | 95 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑑 + 1) → ((𝜑 ∧ 𝑥 ∈ 𝐻) ↔ (𝜑 ∧ (𝑑 + 1) ∈ 𝐻))) |
97 | | csbeq1a 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑑 + 1) → 𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
98 | 97 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑑 + 1) → (𝐶 ∈ ℝ ↔ ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ)) |
99 | 96, 98 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑑 + 1) → (((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ))) |
100 | 93, 94, 99, 18 | vtoclf 3496 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 + 1) ∈ 𝐻) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
101 | 58, 89, 100 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋(𝑑 + 1) / 𝑥⦌𝐶 ∈ ℝ) |
102 | | simp3 1137 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) |
103 | | nfv 1921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
104 | | eleq1 2828 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → (𝑦 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻)) |
105 | 104 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → ((𝜑 ∧ 𝑦 ∈ 𝐻) ↔ (𝜑 ∧ 𝑑 ∈ 𝐻))) |
106 | | csbeq1 3840 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑑 / 𝑥⦌𝐶) |
107 | 44, 106 | eqtr3id 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 𝐹 = ⦋𝑑 / 𝑥⦌𝐶) |
108 | | oveq1 7279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑑 → (𝑦 + 1) = (𝑑 + 1)) |
109 | 108 | csbeq1d 3841 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ⦋(𝑦 + 1) / 𝑥⦌𝐶 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
110 | 49, 109 | eqtr3id 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 𝐺 = ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
111 | 107, 110 | breq12d 5092 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → (𝐹 < 𝐺 ↔ ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶)) |
112 | 105, 111 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → (((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) ↔ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
113 | 103, 112,
55 | chvarfv 2237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐻) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
114 | 58, 75, 113 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑑 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
115 | 57, 86, 101, 102, 114 | lttrd 11147 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) ∧ (𝜑 ∧ 𝑎 ∈ 𝐻) ∧ ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶) |
116 | 115 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → (⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶 → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
117 | 116 | a2d 29 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑) → (((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑑 / 𝑥⦌𝐶) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋(𝑑 + 1) / 𝑥⦌𝐶))) |
118 | 30, 33, 36, 39, 56, 117 | uzind2 12424 |
. . . . . 6
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑎 < 𝑏) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
119 | 24, 26, 27, 118 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → ((𝜑 ∧ 𝑎 ∈ 𝐻) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
120 | 21, 119 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) ∧ 𝑎 < 𝑏) → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶) |
121 | 120 | ex 413 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻)) → (𝑎 < 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 < ⦋𝑏 / 𝑥⦌𝐶)) |
122 | 1, 2, 3, 8, 19, 121 | ltord1 11512 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶)) |
123 | | nfcvd 2910 |
. . . . 5
⊢ (𝐴 ∈ 𝐻 → Ⅎ𝑥𝐷) |
124 | | monotuz.6 |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
125 | 123, 124 | csbiegf 3871 |
. . . 4
⊢ (𝐴 ∈ 𝐻 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
126 | | nfcvd 2910 |
. . . . 5
⊢ (𝐵 ∈ 𝐻 → Ⅎ𝑥𝐸) |
127 | | monotuz.7 |
. . . . 5
⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
128 | 126, 127 | csbiegf 3871 |
. . . 4
⊢ (𝐵 ∈ 𝐻 → ⦋𝐵 / 𝑥⦌𝐶 = 𝐸) |
129 | 125, 128 | breqan12d 5095 |
. . 3
⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶 ↔ 𝐷 < 𝐸)) |
130 | 129 | adantl 482 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (⦋𝐴 / 𝑥⦌𝐶 < ⦋𝐵 / 𝑥⦌𝐶 ↔ 𝐷 < 𝐸)) |
131 | 122, 130 | bitrd 278 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ 𝐷 < 𝐸)) |