| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtge | Structured version Visualization version GIF version | ||
| Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salpreimagtge.x | ⊢ Ⅎ𝑥𝜑 |
| salpreimagtge.a | ⊢ Ⅎ𝑎𝜑 |
| salpreimagtge.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| salpreimagtge.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| salpreimagtge.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
| salpreimagtge.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| salpreimagtge | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salpreimagtge.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | salpreimagtge.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 3 | salpreimagtge.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 1, 2, 3 | preimageiingt 46711 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
| 5 | salpreimagtge.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | nnct 13888 | . . . 4 ⊢ ℕ ≼ ω | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 8 | nnn0 45367 | . . . 4 ⊢ ℕ ≠ ∅ | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
| 10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) |
| 11 | nnrecre 12170 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
| 13 | 10, 12 | resubcld 11548 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ) |
| 14 | salpreimagtge.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
| 15 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ | |
| 16 | 14, 15 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) |
| 17 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆 | |
| 18 | 16, 17 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
| 19 | ovex 7382 | . . . . 5 ⊢ (𝐶 − (1 / 𝑛)) ∈ V | |
| 20 | eleq1 2816 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ)) | |
| 21 | 20 | anbi2d 630 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ))) |
| 22 | breq1 5095 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵)) | |
| 23 | 22 | rabbidv 3402 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
| 24 | 23 | eleq1d 2813 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)) |
| 25 | 21, 24 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))) |
| 26 | salpreimagtge.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
| 27 | 18, 19, 25, 26 | vtoclf 3519 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
| 28 | 13, 27 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
| 29 | 5, 7, 9, 28 | saliincl 46318 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
| 30 | 4, 29 | eqeltrd 2828 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 {crab 3394 ∅c0 4284 ∩ ciin 4942 class class class wbr 5092 (class class class)co 7349 ωcom 7799 ≼ cdom 8870 ℝcr 11008 1c1 11010 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 − cmin 11347 / cdiv 11777 ℕcn 12128 SAlgcsalg 46299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-fl 13696 df-salg 46300 |
| This theorem is referenced by: salpreimalelt 46720 salpreimagtlt 46721 issmfge 46761 |
| Copyright terms: Public domain | W3C validator |