Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtge | Structured version Visualization version GIF version |
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimagtge.x | ⊢ Ⅎ𝑥𝜑 |
salpreimagtge.a | ⊢ Ⅎ𝑎𝜑 |
salpreimagtge.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimagtge.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimagtge.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
salpreimagtge.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimagtge | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtge.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimagtge.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimagtge.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimageiingt 43816 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
5 | salpreimagtge.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 13440 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 42475 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | 3 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) |
11 | nnrecre 11758 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
12 | 11 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
13 | 10, 12 | resubcld 11146 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ) |
14 | salpreimagtge.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
15 | nfv 1921 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ | |
16 | 14, 15 | nfan 1906 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) |
17 | nfv 1921 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆 | |
18 | 16, 17 | nfim 1903 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
19 | ovex 7203 | . . . . 5 ⊢ (𝐶 − (1 / 𝑛)) ∈ V | |
20 | eleq1 2820 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ)) | |
21 | 20 | anbi2d 632 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ))) |
22 | breq1 5033 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵)) | |
23 | 22 | rabbidv 3381 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
24 | 23 | eleq1d 2817 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)) |
25 | 21, 24 | imbi12d 348 | . . . . 5 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))) |
26 | salpreimagtge.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
27 | 18, 19, 25, 26 | vtoclf 3462 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
28 | 13, 27 | syldan 594 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
29 | 5, 7, 9, 28 | saliincl 43428 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
30 | 4, 29 | eqeltrd 2833 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2114 ≠ wne 2934 {crab 3057 ∅c0 4211 ∩ ciin 4882 class class class wbr 5030 (class class class)co 7170 ωcom 7599 ≼ cdom 8553 ℝcr 10614 1c1 10616 ℝ*cxr 10752 < clt 10753 ≤ cle 10754 − cmin 10948 / cdiv 11375 ℕcn 11716 SAlgcsalg 43411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-card 9441 df-acn 9444 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-q 12431 df-rp 12473 df-fl 13253 df-salg 43412 |
This theorem is referenced by: salpreimalelt 43824 salpreimagtlt 43825 issmfge 43864 |
Copyright terms: Public domain | W3C validator |