Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtge Structured version   Visualization version   GIF version

Theorem salpreimagtge 46822
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtge.x 𝑥𝜑
salpreimagtge.a 𝑎𝜑
salpreimagtge.s (𝜑𝑆 ∈ SAlg)
salpreimagtge.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtge.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtge.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtge (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtge
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtge.x . . 3 𝑥𝜑
2 salpreimagtge.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimagtge.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimageiingt 46817 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
5 salpreimagtge.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13888 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 45475 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
103adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
11 nnrecre 12167 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1211adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1310, 12resubcld 11545 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
14 salpreimagtge.a . . . . . . 7 𝑎𝜑
15 nfv 1915 . . . . . . 7 𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ
1614, 15nfan 1900 . . . . . 6 𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)
17 nfv 1915 . . . . . 6 𝑎{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆
1816, 17nfim 1897 . . . . 5 𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
19 ovex 7379 . . . . 5 (𝐶 − (1 / 𝑛)) ∈ V
20 eleq1 2819 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ))
2120anbi2d 630 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)))
22 breq1 5092 . . . . . . . 8 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵))
2322rabbidv 3402 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2423eleq1d 2816 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))
2521, 24imbi12d 344 . . . . 5 (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)))
26 salpreimagtge.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2718, 19, 25, 26vtoclf 3517 . . . 4 ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
2813, 27syldan 591 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
295, 7, 9, 28saliincl 46424 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
304, 29eqeltrd 2831 1 (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  {crab 3395  c0 4280   ciin 4940   class class class wbr 5089  (class class class)co 7346  ωcom 7796  cdom 8867  cr 11005  1c1 11007  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  SAlgcsalg 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696  df-salg 46406
This theorem is referenced by:  salpreimalelt  46826  salpreimagtlt  46827  issmfge  46867
  Copyright terms: Public domain W3C validator