Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtge Structured version   Visualization version   GIF version

Theorem salpreimagtge 43820
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtge.x 𝑥𝜑
salpreimagtge.a 𝑎𝜑
salpreimagtge.s (𝜑𝑆 ∈ SAlg)
salpreimagtge.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtge.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtge.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtge (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtge
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtge.x . . 3 𝑥𝜑
2 salpreimagtge.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimagtge.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimageiingt 43816 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
5 salpreimagtge.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13440 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 42475 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
103adantr 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
11 nnrecre 11758 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1211adantl 485 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1310, 12resubcld 11146 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
14 salpreimagtge.a . . . . . . 7 𝑎𝜑
15 nfv 1921 . . . . . . 7 𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ
1614, 15nfan 1906 . . . . . 6 𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)
17 nfv 1921 . . . . . 6 𝑎{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆
1816, 17nfim 1903 . . . . 5 𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
19 ovex 7203 . . . . 5 (𝐶 − (1 / 𝑛)) ∈ V
20 eleq1 2820 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ))
2120anbi2d 632 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)))
22 breq1 5033 . . . . . . . 8 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵))
2322rabbidv 3381 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2423eleq1d 2817 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))
2521, 24imbi12d 348 . . . . 5 (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)))
26 salpreimagtge.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2718, 19, 25, 26vtoclf 3462 . . . 4 ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
2813, 27syldan 594 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
295, 7, 9, 28saliincl 43428 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
304, 29eqeltrd 2833 1 (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wnf 1790  wcel 2114  wne 2934  {crab 3057  c0 4211   ciin 4882   class class class wbr 5030  (class class class)co 7170  ωcom 7599  cdom 8553  cr 10614  1c1 10616  *cxr 10752   < clt 10753  cle 10754  cmin 10948   / cdiv 11375  cn 11716  SAlgcsalg 43411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-card 9441  df-acn 9444  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-fl 13253  df-salg 43412
This theorem is referenced by:  salpreimalelt  43824  salpreimagtlt  43825  issmfge  43864
  Copyright terms: Public domain W3C validator