Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimagtge Structured version   Visualization version   GIF version

Theorem salpreimagtge 42865
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimagtge.x 𝑥𝜑
salpreimagtge.a 𝑎𝜑
salpreimagtge.s (𝜑𝑆 ∈ SAlg)
salpreimagtge.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimagtge.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
salpreimagtge.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimagtge (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimagtge
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimagtge.x . . 3 𝑥𝜑
2 salpreimagtge.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimagtge.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimageiingt 42861 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
5 salpreimagtge.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13342 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 41509 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
103adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
11 nnrecre 11671 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1211adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1310, 12resubcld 11060 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
14 salpreimagtge.a . . . . . . 7 𝑎𝜑
15 nfv 1908 . . . . . . 7 𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ
1614, 15nfan 1893 . . . . . 6 𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)
17 nfv 1908 . . . . . 6 𝑎{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆
1816, 17nfim 1890 . . . . 5 𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
19 ovex 7184 . . . . 5 (𝐶 − (1 / 𝑛)) ∈ V
20 eleq1 2904 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ))
2120anbi2d 628 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ)))
22 breq1 5065 . . . . . . . 8 (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵))
2322rabbidv 3485 . . . . . . 7 (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥𝐴𝑎 < 𝐵} = {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2423eleq1d 2901 . . . . . 6 (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥𝐴𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))
2521, 24imbi12d 346 . . . . 5 (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)))
26 salpreimagtge.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < 𝐵} ∈ 𝑆)
2718, 19, 25, 26vtoclf 3563 . . . 4 ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
2813, 27syldan 591 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
295, 7, 9, 28saliincl 42473 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)
304, 29eqeltrd 2917 1 (𝜑 → {𝑥𝐴𝐶𝐵} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wnf 1777  wcel 2106  wne 3020  {crab 3146  c0 4294   ciin 4917   class class class wbr 5062  (class class class)co 7151  ωcom 7571  cdom 8499  cr 10528  1c1 10530  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  SAlgcsalg 42456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-fl 13155  df-salg 42457
This theorem is referenced by:  salpreimalelt  42869  salpreimagtlt  42870  issmfge  42909
  Copyright terms: Public domain W3C validator