Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagtge | Structured version Visualization version GIF version |
Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimagtge.x | ⊢ Ⅎ𝑥𝜑 |
salpreimagtge.a | ⊢ Ⅎ𝑎𝜑 |
salpreimagtge.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimagtge.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimagtge.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) |
salpreimagtge.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimagtge | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtge.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimagtge.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimagtge.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimageiingt 44144 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
5 | salpreimagtge.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 13629 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 42807 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) |
11 | nnrecre 11945 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
13 | 10, 12 | resubcld 11333 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ) |
14 | salpreimagtge.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
15 | nfv 1918 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 − (1 / 𝑛)) ∈ ℝ | |
16 | 14, 15 | nfan 1903 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) |
17 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆 | |
18 | 16, 17 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
19 | ovex 7288 | . . . . 5 ⊢ (𝐶 − (1 / 𝑛)) ∈ V | |
20 | eleq1 2826 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 − (1 / 𝑛)) ∈ ℝ)) | |
21 | 20 | anbi2d 628 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ))) |
22 | breq1 5073 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (𝑎 < 𝐵 ↔ (𝐶 − (1 / 𝑛)) < 𝐵)) | |
23 | 22 | rabbidv 3404 | . . . . . . 7 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} = {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) |
24 | 23 | eleq1d 2823 | . . . . . 6 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆)) |
25 | 21, 24 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = (𝐶 − (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆))) |
26 | salpreimagtge.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) | |
27 | 18, 19, 25, 26 | vtoclf 3487 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
28 | 13, 27 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
29 | 5, 7, 9, 28 | saliincl 43756 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ∈ 𝑆) |
30 | 4, 29 | eqeltrd 2839 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∅c0 4253 ∩ ciin 4922 class class class wbr 5070 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 ℝcr 10801 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fl 13440 df-salg 43740 |
This theorem is referenced by: salpreimalelt 44152 salpreimagtlt 44153 issmfge 44192 |
Copyright terms: Public domain | W3C validator |