MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2a Structured version   Visualization version   GIF version

Theorem summolem2a 15624
Description: Lemma for summo 15626. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
summolem2.4 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
summolem2.5 (𝜑𝑁 ∈ ℕ)
summolem2.6 (𝜑𝑀 ∈ ℤ)
summolem2.7 (𝜑𝐴 ⊆ (ℤ𝑀))
summolem2.8 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
summolem2.9 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Assertion
Ref Expression
summolem2a (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑓,𝑘,𝑛,𝐴   𝑓,𝐹,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝐵,𝑓,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑘)   𝐺(𝑓)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summolem2a
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 summo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2 summo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 summolem2.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
4 summolem2.9 . . . . . . . 8 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 fzfid 13882 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ∈ Fin)
6 summolem2.8 . . . . . . . . . . . 12 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
75, 6hasheqf1od 14262 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = (♯‘𝐴))
8 summolem2.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
9 nnnn0 12395 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
10 hashfz1 14255 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
127, 11eqtr3d 2770 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = 𝑁)
1312oveq2d 7368 . . . . . . . . 9 (𝜑 → (1...(♯‘𝐴)) = (1...𝑁))
14 isoeq4 7260 . . . . . . . . 9 ((1...(♯‘𝐴)) = (1...𝑁) → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
164, 15mpbid 232 . . . . . . 7 (𝜑𝐾 Isom < , < ((1...𝑁), 𝐴))
17 isof1o 7263 . . . . . . 7 (𝐾 Isom < , < ((1...𝑁), 𝐴) → 𝐾:(1...𝑁)–1-1-onto𝐴)
1816, 17syl 17 . . . . . 6 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
19 f1of 6768 . . . . . 6 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
2018, 19syl 17 . . . . 5 (𝜑𝐾:(1...𝑁)⟶𝐴)
21 nnuz 12777 . . . . . . 7 ℕ = (ℤ‘1)
228, 21eleqtrdi 2843 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
23 eluzfz2 13434 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2422, 23syl 17 . . . . 5 (𝜑𝑁 ∈ (1...𝑁))
2520, 24ffvelcdmd 7024 . . . 4 (𝜑 → (𝐾𝑁) ∈ 𝐴)
263, 25sseldd 3931 . . 3 (𝜑 → (𝐾𝑁) ∈ (ℤ𝑀))
273sselda 3930 . . . . . 6 ((𝜑𝑛𝐴) → 𝑛 ∈ (ℤ𝑀))
28 f1ocnvfv2 7217 . . . . . . . . 9 ((𝐾:(1...𝑁)–1-1-onto𝐴𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
2918, 28sylan 580 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
30 f1ocnv 6780 . . . . . . . . . . . 12 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:𝐴1-1-onto→(1...𝑁))
31 f1of 6768 . . . . . . . . . . . 12 (𝐾:𝐴1-1-onto→(1...𝑁) → 𝐾:𝐴⟶(1...𝑁))
3218, 30, 313syl 18 . . . . . . . . . . 11 (𝜑𝐾:𝐴⟶(1...𝑁))
3332ffvelcdmda 7023 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐾𝑛) ∈ (1...𝑁))
34 elfzle2 13430 . . . . . . . . . 10 ((𝐾𝑛) ∈ (1...𝑁) → (𝐾𝑛) ≤ 𝑁)
3533, 34syl 17 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐾𝑛) ≤ 𝑁)
3616adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐾 Isom < , < ((1...𝑁), 𝐴))
37 fzssuz 13467 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (ℤ‘1)
38 uzssz 12759 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
39 zssre 12482 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
4038, 39sstri 3940 . . . . . . . . . . . . 13 (ℤ‘1) ⊆ ℝ
4137, 40sstri 3940 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℝ
42 ressxr 11163 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4341, 42sstri 3940 . . . . . . . . . . 11 (1...𝑁) ⊆ ℝ*
4443a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (1...𝑁) ⊆ ℝ*)
453adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → 𝐴 ⊆ (ℤ𝑀))
46 uzssz 12759 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
4746, 39sstri 3940 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℝ
4845, 47sstrdi 3943 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ)
4948, 42sstrdi 3943 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ*)
5024adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝑁 ∈ (1...𝑁))
51 leisorel 14369 . . . . . . . . . 10 ((𝐾 Isom < , < ((1...𝑁), 𝐴) ∧ ((1...𝑁) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝐾𝑛) ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5236, 44, 49, 33, 50, 51syl122anc 1381 . . . . . . . . 9 ((𝜑𝑛𝐴) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5335, 52mpbid 232 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁))
5429, 53eqbrtrrd 5117 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑛 ≤ (𝐾𝑁))
55 eluzelz 12748 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
5627, 55syl 17 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℤ)
57 eluzelz 12748 . . . . . . . . . 10 ((𝐾𝑁) ∈ (ℤ𝑀) → (𝐾𝑁) ∈ ℤ)
5826, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐾𝑁) ∈ ℤ)
5958adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ ℤ)
60 eluz 12752 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6156, 59, 60syl2anc 584 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6254, 61mpbird 257 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ (ℤ𝑛))
63 elfzuzb 13420 . . . . . 6 (𝑛 ∈ (𝑀...(𝐾𝑁)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝐾𝑁) ∈ (ℤ𝑛)))
6427, 62, 63sylanbrc 583 . . . . 5 ((𝜑𝑛𝐴) → 𝑛 ∈ (𝑀...(𝐾𝑁)))
6564ex 412 . . . 4 (𝜑 → (𝑛𝐴𝑛 ∈ (𝑀...(𝐾𝑁))))
6665ssrdv 3936 . . 3 (𝜑𝐴 ⊆ (𝑀...(𝐾𝑁)))
671, 2, 26, 66fsumcvg 15621 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘(𝐾𝑁)))
68 addlid 11303 . . . . 5 (𝑚 ∈ ℂ → (0 + 𝑚) = 𝑚)
6968adantl 481 . . . 4 ((𝜑𝑚 ∈ ℂ) → (0 + 𝑚) = 𝑚)
70 addrid 11300 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
7170adantl 481 . . . 4 ((𝜑𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
72 addcl 11095 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑚 + 𝑥) ∈ ℂ)
7372adantl 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑚 + 𝑥) ∈ ℂ)
74 0cnd 11112 . . . 4 (𝜑 → 0 ∈ ℂ)
7524, 13eleqtrrd 2836 . . . 4 (𝜑𝑁 ∈ (1...(♯‘𝐴)))
76 iftrue 4480 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
7776adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
7877, 2eqeltrd 2833 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
7978ex 412 . . . . . . . 8 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
80 iffalse 4483 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
81 0cn 11111 . . . . . . . . 9 0 ∈ ℂ
8280, 81eqeltrdi 2841 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8379, 82pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8483adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8584, 1fmptd 7053 . . . . 5 (𝜑𝐹:ℤ⟶ℂ)
86 elfzelz 13426 . . . . 5 (𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴))) → 𝑚 ∈ ℤ)
87 ffvelcdm 7020 . . . . 5 ((𝐹:ℤ⟶ℂ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) ∈ ℂ)
8885, 86, 87syl2an 596 . . . 4 ((𝜑𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴)))) → (𝐹𝑚) ∈ ℂ)
89 fveqeq2 6837 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
90 eldifi 4080 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))))
9190elfzelzd 13427 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ ℤ)
92 eldifn 4081 . . . . . . . . . 10 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → ¬ 𝑘𝐴)
9392, 80syl 17 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
9493, 81eqeltrdi 2841 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
951fvmpt2 6946 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
9691, 94, 95syl2anc 584 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
9796, 93eqtrd 2768 . . . . . 6 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = 0)
9889, 97vtoclga 3529 . . . . 5 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑚) = 0)
9998adantl 481 . . . 4 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = 0)
100 isof1o 7263 . . . . . . . 8 (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐾:(1...(♯‘𝐴))–1-1-onto𝐴)
101 f1of 6768 . . . . . . . 8 (𝐾:(1...(♯‘𝐴))–1-1-onto𝐴𝐾:(1...(♯‘𝐴))⟶𝐴)
1024, 100, 1013syl 18 . . . . . . 7 (𝜑𝐾:(1...(♯‘𝐴))⟶𝐴)
103102ffvelcdmda 7023 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ 𝐴)
104103iftrued 4482 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) = (𝐾𝑥) / 𝑘𝐵)
1053adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ𝑀))
106105, 103sseldd 3931 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ (ℤ𝑀))
107 eluzelz 12748 . . . . . . 7 ((𝐾𝑥) ∈ (ℤ𝑀) → (𝐾𝑥) ∈ ℤ)
108106, 107syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ ℤ)
109 nfv 1915 . . . . . . . . 9 𝑘𝜑
110 nfv 1915 . . . . . . . . . . 11 𝑘(𝐾𝑥) ∈ 𝐴
111 nfcsb1v 3870 . . . . . . . . . . 11 𝑘(𝐾𝑥) / 𝑘𝐵
112 nfcv 2895 . . . . . . . . . . 11 𝑘0
113110, 111, 112nfif 4505 . . . . . . . . . 10 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0)
114113nfel1 2912 . . . . . . . . 9 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ
115109, 114nfim 1897 . . . . . . . 8 𝑘(𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
116 fvex 6841 . . . . . . . 8 (𝐾𝑥) ∈ V
117 eleq1 2821 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → (𝑘𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
118 csbeq1a 3860 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → 𝐵 = (𝐾𝑥) / 𝑘𝐵)
119117, 118ifbieq1d 4499 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → if(𝑘𝐴, 𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
120119eleq1d 2818 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ))
121120imbi2d 340 . . . . . . . 8 (𝑘 = (𝐾𝑥) → ((𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ) ↔ (𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)))
122115, 116, 121, 83vtoclf 3518 . . . . . . 7 (𝜑 → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
123122adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
124 eleq1 2821 . . . . . . . 8 (𝑛 = (𝐾𝑥) → (𝑛𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
125 csbeq1 3849 . . . . . . . 8 (𝑛 = (𝐾𝑥) → 𝑛 / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
126124, 125ifbieq1d 4499 . . . . . . 7 (𝑛 = (𝐾𝑥) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
127 nfcv 2895 . . . . . . . . 9 𝑛if(𝑘𝐴, 𝐵, 0)
128 nfv 1915 . . . . . . . . . 10 𝑘 𝑛𝐴
129 nfcsb1v 3870 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
130128, 129, 112nfif 4505 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
131 eleq1 2821 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
132 csbeq1a 3860 . . . . . . . . . 10 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
133131, 132ifbieq1d 4499 . . . . . . . . 9 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
134127, 130, 133cbvmpt 5195 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
1351, 134eqtri 2756 . . . . . . 7 𝐹 = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
136126, 135fvmptg 6933 . . . . . 6 (((𝐾𝑥) ∈ ℤ ∧ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
137108, 123, 136syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
138 elfznn 13455 . . . . . 6 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
139104, 123eqeltrrd 2834 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ)
140 fveq2 6828 . . . . . . . 8 (𝑛 = 𝑥 → (𝐾𝑛) = (𝐾𝑥))
141140csbeq1d 3850 . . . . . . 7 (𝑛 = 𝑥(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
142 summolem2.4 . . . . . . 7 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
143141, 142fvmptg 6933 . . . . . 6 ((𝑥 ∈ ℕ ∧ (𝐾𝑥) / 𝑘𝐵 ∈ ℂ) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
144138, 139, 143syl2an2 686 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
145104, 137, 1443eqtr4rd 2779 . . . 4 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐹‘(𝐾𝑥)))
14669, 71, 73, 74, 4, 75, 3, 88, 99, 145seqcoll 14373 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐻)‘𝑁))
147 summo.3 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
1488, 8jca 511 . . . 4 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ))
1491, 2, 147, 142, 148, 6, 18summolem3 15623 . . 3 (𝜑 → (seq1( + , 𝐺)‘𝑁) = (seq1( + , 𝐻)‘𝑁))
150146, 149eqtr4d 2771 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐺)‘𝑁))
15167, 150breqtrd 5119 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  csb 3846  cdif 3895  wss 3898  ifcif 4474   class class class wbr 5093  cmpt 5174  ccnv 5618  wf 6482  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  *cxr 11152   < clt 11153  cle 11154  cn 12132  0cn0 12388  cz 12475  cuz 12738  ...cfz 13409  seqcseq 13910  chash 14239  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397
This theorem is referenced by:  summolem2  15625  zsum  15627
  Copyright terms: Public domain W3C validator