Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimaltle Structured version   Visualization version   GIF version

Theorem salpreimaltle 46682
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimaltle.x 𝑥𝜑
salpreimaltle.a 𝑎𝜑
salpreimaltle.s (𝜑𝑆 ∈ SAlg)
salpreimaltle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimaltle.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
salpreimaltle.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimaltle (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimaltle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimaltle.x . . 3 𝑥𝜑
2 salpreimaltle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimaltle.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimaleiinlt 46677 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
5 salpreimaltle.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 14019 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 45328 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
10 simpl 482 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝜑)
11 simpl 482 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
12 nnrecre 12306 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1312adantl 481 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1411, 13readdcld 11288 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
153, 14sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
16 salpreimaltle.a . . . . . . 7 𝑎𝜑
17 nfv 1912 . . . . . . 7 𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ
1816, 17nfan 1897 . . . . . 6 𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)
19 nfv 1912 . . . . . 6 𝑎{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆
2018, 19nfim 1894 . . . . 5 𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
21 ovex 7464 . . . . 5 (𝐶 + (1 / 𝑛)) ∈ V
22 eleq1 2827 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ))
2322anbi2d 630 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)))
24 breq2 5152 . . . . . . . 8 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎𝐵 < (𝐶 + (1 / 𝑛))))
2524rabbidv 3441 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥𝐴𝐵 < 𝑎} = {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2625eleq1d 2824 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥𝐴𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))
2723, 26imbi12d 344 . . . . 5 (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)))
28 salpreimaltle.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
2920, 21, 27, 28vtoclf 3564 . . . 4 ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
3010, 15, 29syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
315, 7, 9, 30saliincl 46283 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
324, 31eqeltrd 2839 1 (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  {crab 3433  c0 4339   ciin 4997   class class class wbr 5148  (class class class)co 7431  ωcom 7887  cdom 8982  cr 11152  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  cn 12264  SAlgcsalg 46264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fl 13829  df-salg 46265
This theorem is referenced by:  issmfle  46701
  Copyright terms: Public domain W3C validator