Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimaltle Structured version   Visualization version   GIF version

Theorem salpreimaltle 44262
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimaltle.x 𝑥𝜑
salpreimaltle.a 𝑎𝜑
salpreimaltle.s (𝜑𝑆 ∈ SAlg)
salpreimaltle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimaltle.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
salpreimaltle.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimaltle (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimaltle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimaltle.x . . 3 𝑥𝜑
2 salpreimaltle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimaltle.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimaleiinlt 44258 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
5 salpreimaltle.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13701 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 42917 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
10 simpl 483 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝜑)
11 simpl 483 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
12 nnrecre 12015 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1312adantl 482 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1411, 13readdcld 11004 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
153, 14sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
16 salpreimaltle.a . . . . . . 7 𝑎𝜑
17 nfv 1917 . . . . . . 7 𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ
1816, 17nfan 1902 . . . . . 6 𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)
19 nfv 1917 . . . . . 6 𝑎{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆
2018, 19nfim 1899 . . . . 5 𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
21 ovex 7308 . . . . 5 (𝐶 + (1 / 𝑛)) ∈ V
22 eleq1 2826 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ))
2322anbi2d 629 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)))
24 breq2 5078 . . . . . . . 8 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎𝐵 < (𝐶 + (1 / 𝑛))))
2524rabbidv 3414 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥𝐴𝐵 < 𝑎} = {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2625eleq1d 2823 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥𝐴𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))
2723, 26imbi12d 345 . . . . 5 (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)))
28 salpreimaltle.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
2920, 21, 27, 28vtoclf 3497 . . . 4 ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
3010, 15, 29syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
315, 7, 9, 30saliincl 43866 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
324, 31eqeltrd 2839 1 (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  {crab 3068  c0 4256   ciin 4925   class class class wbr 5074  (class class class)co 7275  ωcom 7712  cdom 8731  cr 10870  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  cn 11973  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fl 13512  df-salg 43850
This theorem is referenced by:  issmfle  44281
  Copyright terms: Public domain W3C validator