Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimaltle | Structured version Visualization version GIF version |
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimaltle.x | ⊢ Ⅎ𝑥𝜑 |
salpreimaltle.a | ⊢ Ⅎ𝑎𝜑 |
salpreimaltle.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimaltle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimaltle.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) |
salpreimaltle.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimaltle | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimaltle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimaltle.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimaleiinlt 44515 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
5 | salpreimaltle.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 13780 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 43171 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) | |
11 | simpl 483 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) | |
12 | nnrecre 12094 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
14 | 11, 13 | readdcld 11083 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
15 | 3, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
16 | salpreimaltle.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
17 | nfv 1916 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ | |
18 | 16, 17 | nfan 1901 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) |
19 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆 | |
20 | 18, 19 | nfim 1898 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
21 | ovex 7349 | . . . . 5 ⊢ (𝐶 + (1 / 𝑛)) ∈ V | |
22 | eleq1 2824 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ)) | |
23 | 22 | anbi2d 629 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ))) |
24 | breq2 5090 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎 ↔ 𝐵 < (𝐶 + (1 / 𝑛)))) | |
25 | 24 | rabbidv 3411 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | 25 | eleq1d 2821 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)) |
27 | 23, 26 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))) |
28 | salpreimaltle.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) | |
29 | 20, 21, 27, 28 | vtoclf 3505 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
30 | 10, 15, 29 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
31 | 5, 7, 9, 30 | saliincl 44121 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
32 | 4, 31 | eqeltrd 2837 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ≠ wne 2940 {crab 3403 ∅c0 4266 ∩ ciin 4937 class class class wbr 5086 (class class class)co 7316 ωcom 7758 ≼ cdom 8780 ℝcr 10949 1c1 10951 + caddc 10953 ℝ*cxr 11087 < clt 11088 ≤ cle 11089 / cdiv 11711 ℕcn 12052 SAlgcsalg 44104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-sup 9277 df-inf 9278 df-card 9774 df-acn 9777 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-q 12768 df-rp 12810 df-fl 13591 df-salg 44105 |
This theorem is referenced by: issmfle 44539 |
Copyright terms: Public domain | W3C validator |