![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimaltle | Structured version Visualization version GIF version |
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimaltle.x | ⊢ Ⅎ𝑥𝜑 |
salpreimaltle.a | ⊢ Ⅎ𝑎𝜑 |
salpreimaltle.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimaltle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimaltle.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) |
salpreimaltle.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimaltle | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimaltle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimaltle.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimaleiinlt 41723 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
5 | salpreimaltle.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 13082 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 40390 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | simpl 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) | |
11 | simpl 476 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) | |
12 | nnrecre 11400 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
13 | 12 | adantl 475 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
14 | 11, 13 | readdcld 10393 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
15 | 3, 14 | sylan 575 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
16 | salpreimaltle.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
17 | nfv 2013 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ | |
18 | 16, 17 | nfan 2002 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) |
19 | nfv 2013 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆 | |
20 | 18, 19 | nfim 1999 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
21 | ovex 6942 | . . . . 5 ⊢ (𝐶 + (1 / 𝑛)) ∈ V | |
22 | eleq1 2894 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ)) | |
23 | 22 | anbi2d 622 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ))) |
24 | breq2 4879 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎 ↔ 𝐵 < (𝐶 + (1 / 𝑛)))) | |
25 | 24 | rabbidv 3402 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | 25 | eleq1d 2891 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)) |
27 | 23, 26 | imbi12d 336 | . . . . 5 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))) |
28 | salpreimaltle.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) | |
29 | 20, 21, 27, 28 | vtoclf 3474 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
30 | 10, 15, 29 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
31 | 5, 7, 9, 30 | saliincl 41334 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
32 | 4, 31 | eqeltrd 2906 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 Ⅎwnf 1882 ∈ wcel 2164 ≠ wne 2999 {crab 3121 ∅c0 4146 ∩ ciin 4743 class class class wbr 4875 (class class class)co 6910 ωcom 7331 ≼ cdom 8226 ℝcr 10258 1c1 10260 + caddc 10262 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 / cdiv 11016 ℕcn 11357 SAlgcsalg 41317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-inf 8624 df-card 9085 df-acn 9088 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-fl 12895 df-salg 41318 |
This theorem is referenced by: issmfle 41746 |
Copyright terms: Public domain | W3C validator |