Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimaltle Structured version   Visualization version   GIF version

Theorem salpreimaltle 46717
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimaltle.x 𝑥𝜑
salpreimaltle.a 𝑎𝜑
salpreimaltle.s (𝜑𝑆 ∈ SAlg)
salpreimaltle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimaltle.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
salpreimaltle.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimaltle (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimaltle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimaltle.x . . 3 𝑥𝜑
2 salpreimaltle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimaltle.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimaleiinlt 46712 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
5 salpreimaltle.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13888 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 45367 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
10 simpl 482 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝜑)
11 simpl 482 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
12 nnrecre 12170 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1312adantl 481 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1411, 13readdcld 11144 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
153, 14sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
16 salpreimaltle.a . . . . . . 7 𝑎𝜑
17 nfv 1914 . . . . . . 7 𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ
1816, 17nfan 1899 . . . . . 6 𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)
19 nfv 1914 . . . . . 6 𝑎{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆
2018, 19nfim 1896 . . . . 5 𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
21 ovex 7382 . . . . 5 (𝐶 + (1 / 𝑛)) ∈ V
22 eleq1 2816 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ))
2322anbi2d 630 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)))
24 breq2 5096 . . . . . . . 8 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎𝐵 < (𝐶 + (1 / 𝑛))))
2524rabbidv 3402 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥𝐴𝐵 < 𝑎} = {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2625eleq1d 2813 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥𝐴𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))
2723, 26imbi12d 344 . . . . 5 (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)))
28 salpreimaltle.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
2920, 21, 27, 28vtoclf 3519 . . . 4 ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
3010, 15, 29syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
315, 7, 9, 30saliincl 46318 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
324, 31eqeltrd 2828 1 (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  {crab 3394  c0 4284   ciin 4942   class class class wbr 5092  (class class class)co 7349  ωcom 7799  cdom 8870  cr 11008  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  cn 12128  SAlgcsalg 46299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696  df-salg 46300
This theorem is referenced by:  issmfle  46736
  Copyright terms: Public domain W3C validator