Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimaltle Structured version   Visualization version   GIF version

Theorem salpreimaltle 43313
 Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimaltle.x 𝑥𝜑
salpreimaltle.a 𝑎𝜑
salpreimaltle.s (𝜑𝑆 ∈ SAlg)
salpreimaltle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimaltle.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
salpreimaltle.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimaltle (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimaltle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 salpreimaltle.x . . 3 𝑥𝜑
2 salpreimaltle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3 salpreimaltle.c . . 3 (𝜑𝐶 ∈ ℝ)
41, 2, 3preimaleiinlt 43309 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
5 salpreimaltle.s . . 3 (𝜑𝑆 ∈ SAlg)
6 nnct 13355 . . . 4 ℕ ≼ ω
76a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
8 nnn0 41964 . . . 4 ℕ ≠ ∅
98a1i 11 . . 3 (𝜑 → ℕ ≠ ∅)
10 simpl 486 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝜑)
11 simpl 486 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
12 nnrecre 11678 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1312adantl 485 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
1411, 13readdcld 10670 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
153, 14sylan 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
16 salpreimaltle.a . . . . . . 7 𝑎𝜑
17 nfv 1916 . . . . . . 7 𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ
1816, 17nfan 1901 . . . . . 6 𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)
19 nfv 1916 . . . . . 6 𝑎{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆
2018, 19nfim 1898 . . . . 5 𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
21 ovex 7184 . . . . 5 (𝐶 + (1 / 𝑛)) ∈ V
22 eleq1 2903 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ))
2322anbi2d 631 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ)))
24 breq2 5057 . . . . . . . 8 (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎𝐵 < (𝐶 + (1 / 𝑛))))
2524rabbidv 3465 . . . . . . 7 (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥𝐴𝐵 < 𝑎} = {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2625eleq1d 2900 . . . . . 6 (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥𝐴𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))
2723, 26imbi12d 348 . . . . 5 (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)))
28 salpreimaltle.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ 𝑆)
2920, 21, 27, 28vtoclf 3544 . . . 4 ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
3010, 15, 29syl2anc 587 . . 3 ((𝜑𝑛 ∈ ℕ) → {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
315, 7, 9, 30saliincl 42920 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)
324, 31eqeltrd 2916 1 (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2115   ≠ wne 3014  {crab 3137  ∅c0 4276  ∩ ciin 4906   class class class wbr 5053  (class class class)co 7151  ωcom 7576   ≼ cdom 8505  ℝcr 10536  1c1 10538   + caddc 10540  ℝ*cxr 10674   < clt 10675   ≤ cle 10676   / cdiv 11297  ℕcn 11636  SAlgcsalg 42903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-inf 8906  df-card 9367  df-acn 9370  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fl 13168  df-salg 42904 This theorem is referenced by:  issmfle  43332
 Copyright terms: Public domain W3C validator