![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimaltle | Structured version Visualization version GIF version |
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimaltle.x | ⊢ Ⅎ𝑥𝜑 |
salpreimaltle.a | ⊢ Ⅎ𝑎𝜑 |
salpreimaltle.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimaltle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimaltle.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) |
salpreimaltle.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimaltle | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimaltle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimaltle.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimaleiinlt 46168 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
5 | salpreimaltle.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 13973 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 44819 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | simpl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) | |
11 | simpl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) | |
12 | nnrecre 12279 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
13 | 12 | adantl 480 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
14 | 11, 13 | readdcld 11268 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
15 | 3, 14 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
16 | salpreimaltle.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
17 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ | |
18 | 16, 17 | nfan 1894 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) |
19 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆 | |
20 | 18, 19 | nfim 1891 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
21 | ovex 7446 | . . . . 5 ⊢ (𝐶 + (1 / 𝑛)) ∈ V | |
22 | eleq1 2813 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ)) | |
23 | 22 | anbi2d 628 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ))) |
24 | breq2 5148 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎 ↔ 𝐵 < (𝐶 + (1 / 𝑛)))) | |
25 | 24 | rabbidv 3427 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | 25 | eleq1d 2810 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)) |
27 | 23, 26 | imbi12d 343 | . . . . 5 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))) |
28 | salpreimaltle.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) | |
29 | 20, 21, 27, 28 | vtoclf 3543 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
30 | 10, 15, 29 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
31 | 5, 7, 9, 30 | saliincl 45774 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
32 | 4, 31 | eqeltrd 2825 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ≠ wne 2930 {crab 3419 ∅c0 4319 ∩ ciin 4993 class class class wbr 5144 (class class class)co 7413 ωcom 7865 ≼ cdom 8955 ℝcr 11132 1c1 11134 + caddc 11136 ℝ*cxr 11272 < clt 11273 ≤ cle 11274 / cdiv 11896 ℕcn 12237 SAlgcsalg 45755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-inf 9461 df-card 9957 df-acn 9960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-q 12958 df-rp 13002 df-fl 13784 df-salg 45756 |
This theorem is referenced by: issmfle 46192 |
Copyright terms: Public domain | W3C validator |