Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Visualization version   GIF version

Theorem oddcomabszz 42940
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
oddcomabszz.2 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
oddcomabszz.3 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
oddcomabszz.4 (𝑥 = 𝑦𝐴 = 𝐵)
oddcomabszz.5 (𝑥 = -𝑦𝐴 = 𝐶)
oddcomabszz.6 (𝑥 = 𝐷𝐴 = 𝐸)
oddcomabszz.7 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
Assertion
Ref Expression
oddcomabszz ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝑥,𝐹   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑦)   𝐸(𝑦)   𝐹(𝑦)

Proof of Theorem oddcomabszz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . . . . 6 (𝑎 = 𝐷 → (𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ))
21anbi2d 630 . . . . 5 (𝑎 = 𝐷 → ((𝜑𝑎 ∈ ℤ) ↔ (𝜑𝐷 ∈ ℤ)))
3 csbeq1 3868 . . . . . . 7 (𝑎 = 𝐷𝑎 / 𝑥𝐴 = 𝐷 / 𝑥𝐴)
43fveq2d 6865 . . . . . 6 (𝑎 = 𝐷 → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝐷 / 𝑥𝐴))
5 fveq2 6861 . . . . . . 7 (𝑎 = 𝐷 → (abs‘𝑎) = (abs‘𝐷))
65csbeq1d 3869 . . . . . 6 (𝑎 = 𝐷(abs‘𝑎) / 𝑥𝐴 = (abs‘𝐷) / 𝑥𝐴)
74, 6eqeq12d 2746 . . . . 5 (𝑎 = 𝐷 → ((abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴 ↔ (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
82, 7imbi12d 344 . . . 4 (𝑎 = 𝐷 → (((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴) ↔ ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)))
9 nfv 1914 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ)
10 nfcsb1v 3889 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐴
1110nfel1 2909 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐴 ∈ ℝ
129, 11nfim 1896 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
13 eleq1 2817 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1413anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
15 csbeq1a 3879 . . . . . . . . . . 11 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
1615eleq1d 2814 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐴 ∈ ℝ ↔ 𝑎 / 𝑥𝐴 ∈ ℝ))
1714, 16imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)))
18 oddcomabszz.1 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
1912, 17, 18chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
2019adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 / 𝑥𝐴 ∈ ℝ)
21 nfv 1914 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)
22 nfcv 2892 . . . . . . . . . . 11 𝑥0
23 nfcv 2892 . . . . . . . . . . 11 𝑥
2422, 23, 10nfbr 5157 . . . . . . . . . 10 𝑥0 ≤ 𝑎 / 𝑥𝐴
2521, 24nfim 1896 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
26 breq2 5114 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2713, 263anbi23d 1441 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)))
2815breq2d 5122 . . . . . . . . . 10 (𝑥 = 𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥𝐴))
2927, 28imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)))
30 oddcomabszz.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
3125, 29, 30chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
32313expa 1118 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
3320, 32absidd 15396 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = 𝑎 / 𝑥𝐴)
34 zre 12540 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
3534ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℝ)
36 absid 15269 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3735, 36sylancom 588 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3837csbeq1d 3869 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
3933, 38eqtr4d 2768 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
40 nfv 1914 . . . . . . . 8 𝑦((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
41 eleq1 2817 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
4241anbi2d 630 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
43 negex 11426 . . . . . . . . . . . 12 -𝑦 ∈ V
44 oddcomabszz.5 . . . . . . . . . . . 12 (𝑥 = -𝑦𝐴 = 𝐶)
4543, 44csbie 3900 . . . . . . . . . . 11 -𝑦 / 𝑥𝐴 = 𝐶
46 negeq 11420 . . . . . . . . . . . 12 (𝑦 = 𝑎 → -𝑦 = -𝑎)
4746csbeq1d 3869 . . . . . . . . . . 11 (𝑦 = 𝑎-𝑦 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
4845, 47eqtr3id 2779 . . . . . . . . . 10 (𝑦 = 𝑎𝐶 = -𝑎 / 𝑥𝐴)
49 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
50 oddcomabszz.4 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐴 = 𝐵)
5149, 50csbie 3900 . . . . . . . . . . . 12 𝑦 / 𝑥𝐴 = 𝐵
52 csbeq1 3868 . . . . . . . . . . . 12 (𝑦 = 𝑎𝑦 / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
5351, 52eqtr3id 2779 . . . . . . . . . . 11 (𝑦 = 𝑎𝐵 = 𝑎 / 𝑥𝐴)
5453negeqd 11422 . . . . . . . . . 10 (𝑦 = 𝑎 → -𝐵 = -𝑎 / 𝑥𝐴)
5548, 54eqeq12d 2746 . . . . . . . . 9 (𝑦 = 𝑎 → (𝐶 = -𝐵-𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴))
5642, 55imbi12d 344 . . . . . . . 8 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵) ↔ ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)))
57 oddcomabszz.3 . . . . . . . 8 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
5840, 56, 57chvarfv 2241 . . . . . . 7 ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
5958adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6034ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
61 absnid 15271 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6260, 61sylancom 588 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6362csbeq1d 3869 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6419adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ∈ ℝ)
65 znegcl 12575 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
66 nfv 1914 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)
67 nfcsb1v 3889 . . . . . . . . . . . . . . 15 𝑥-𝑎 / 𝑥𝐴
6822, 23, 67nfbr 5157 . . . . . . . . . . . . . 14 𝑥0 ≤ -𝑎 / 𝑥𝐴
6966, 68nfim 1896 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
70 negex 11426 . . . . . . . . . . . . 13 -𝑎 ∈ V
71 eleq1 2817 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
72 breq2 5114 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ -𝑎))
7371, 723anbi23d 1441 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)))
74 csbeq1a 3879 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎𝐴 = -𝑎 / 𝑥𝐴)
7574breq2d 5122 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
7673, 75imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)))
7769, 70, 76, 30vtoclf 3533 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
78773expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ -𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
7965, 78sylan2 593 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8058breq2d 5122 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 / 𝑥𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8179, 80sylibd 239 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8234adantl 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
8382le0neg1d 11756 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 ↔ 0 ≤ -𝑎))
8419le0neg1d 11756 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 / 𝑥𝐴 ≤ 0 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8581, 83, 843imtr4d 294 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 → 𝑎 / 𝑥𝐴 ≤ 0))
8685imp 406 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ≤ 0)
8764, 86absnidd 15387 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = -𝑎 / 𝑥𝐴)
8859, 63, 873eqtr4rd 2776 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
89 0re 11183 . . . . . . 7 0 ∈ ℝ
90 letric 11281 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎𝑎 ≤ 0))
9189, 34, 90sylancr 587 . . . . . 6 (𝑎 ∈ ℤ → (0 ≤ 𝑎𝑎 ≤ 0))
9291adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℤ) → (0 ≤ 𝑎𝑎 ≤ 0))
9339, 88, 92mpjaodan 960 . . . 4 ((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
948, 93vtoclg 3523 . . 3 (𝐷 ∈ ℤ → ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
9594anabsi7 671 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)
96 nfcvd 2893 . . . . 5 (𝐷 ∈ ℤ → 𝑥𝐸)
97 oddcomabszz.6 . . . . 5 (𝑥 = 𝐷𝐴 = 𝐸)
9896, 97csbiegf 3898 . . . 4 (𝐷 ∈ ℤ → 𝐷 / 𝑥𝐴 = 𝐸)
9998fveq2d 6865 . . 3 (𝐷 ∈ ℤ → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
10099adantl 481 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
101 fvex 6874 . . . 4 (abs‘𝐷) ∈ V
102 oddcomabszz.7 . . . 4 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
103101, 102csbie 3900 . . 3 (abs‘𝐷) / 𝑥𝐴 = 𝐹
104103a1i 11 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷) / 𝑥𝐴 = 𝐹)
10595, 100, 1043eqtr3d 2773 1 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  csb 3865   class class class wbr 5110  cfv 6514  cr 11074  0cc0 11075  cle 11216  -cneg 11413  cz 12536  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  rmyabs  42954
  Copyright terms: Public domain W3C validator