Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Visualization version   GIF version

Theorem oddcomabszz 40243
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
oddcomabszz.2 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
oddcomabszz.3 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
oddcomabszz.4 (𝑥 = 𝑦𝐴 = 𝐵)
oddcomabszz.5 (𝑥 = -𝑦𝐴 = 𝐶)
oddcomabszz.6 (𝑥 = 𝐷𝐴 = 𝐸)
oddcomabszz.7 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
Assertion
Ref Expression
oddcomabszz ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝑥,𝐹   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑦)   𝐸(𝑦)   𝐹(𝑦)

Proof of Theorem oddcomabszz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2838 . . . . . 6 (𝑎 = 𝐷 → (𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ))
21anbi2d 632 . . . . 5 (𝑎 = 𝐷 → ((𝜑𝑎 ∈ ℤ) ↔ (𝜑𝐷 ∈ ℤ)))
3 csbeq1 3804 . . . . . . 7 (𝑎 = 𝐷𝑎 / 𝑥𝐴 = 𝐷 / 𝑥𝐴)
43fveq2d 6655 . . . . . 6 (𝑎 = 𝐷 → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝐷 / 𝑥𝐴))
5 fveq2 6651 . . . . . . 7 (𝑎 = 𝐷 → (abs‘𝑎) = (abs‘𝐷))
65csbeq1d 3805 . . . . . 6 (𝑎 = 𝐷(abs‘𝑎) / 𝑥𝐴 = (abs‘𝐷) / 𝑥𝐴)
74, 6eqeq12d 2775 . . . . 5 (𝑎 = 𝐷 → ((abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴 ↔ (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
82, 7imbi12d 349 . . . 4 (𝑎 = 𝐷 → (((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴) ↔ ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)))
9 nfv 1916 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ)
10 nfcsb1v 3825 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐴
1110nfel1 2933 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐴 ∈ ℝ
129, 11nfim 1898 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
13 eleq1 2838 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1413anbi2d 632 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
15 csbeq1a 3815 . . . . . . . . . . 11 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
1615eleq1d 2835 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐴 ∈ ℝ ↔ 𝑎 / 𝑥𝐴 ∈ ℝ))
1714, 16imbi12d 349 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)))
18 oddcomabszz.1 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
1912, 17, 18chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
2019adantr 485 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 / 𝑥𝐴 ∈ ℝ)
21 nfv 1916 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)
22 nfcv 2917 . . . . . . . . . . 11 𝑥0
23 nfcv 2917 . . . . . . . . . . 11 𝑥
2422, 23, 10nfbr 5072 . . . . . . . . . 10 𝑥0 ≤ 𝑎 / 𝑥𝐴
2521, 24nfim 1898 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
26 breq2 5029 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2713, 263anbi23d 1437 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)))
2815breq2d 5037 . . . . . . . . . 10 (𝑥 = 𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥𝐴))
2927, 28imbi12d 349 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)))
30 oddcomabszz.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
3125, 29, 30chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
32313expa 1116 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
3320, 32absidd 14815 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = 𝑎 / 𝑥𝐴)
34 zre 12009 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
3534ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℝ)
36 absid 14689 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3735, 36sylancom 592 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3837csbeq1d 3805 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
3933, 38eqtr4d 2797 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
40 nfv 1916 . . . . . . . 8 𝑦((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
41 eleq1 2838 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
4241anbi2d 632 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
43 negex 10907 . . . . . . . . . . . 12 -𝑦 ∈ V
44 oddcomabszz.5 . . . . . . . . . . . 12 (𝑥 = -𝑦𝐴 = 𝐶)
4543, 44csbie 3836 . . . . . . . . . . 11 -𝑦 / 𝑥𝐴 = 𝐶
46 negeq 10901 . . . . . . . . . . . 12 (𝑦 = 𝑎 → -𝑦 = -𝑎)
4746csbeq1d 3805 . . . . . . . . . . 11 (𝑦 = 𝑎-𝑦 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
4845, 47syl5eqr 2808 . . . . . . . . . 10 (𝑦 = 𝑎𝐶 = -𝑎 / 𝑥𝐴)
49 vex 3411 . . . . . . . . . . . . 13 𝑦 ∈ V
50 oddcomabszz.4 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐴 = 𝐵)
5149, 50csbie 3836 . . . . . . . . . . . 12 𝑦 / 𝑥𝐴 = 𝐵
52 csbeq1 3804 . . . . . . . . . . . 12 (𝑦 = 𝑎𝑦 / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
5351, 52syl5eqr 2808 . . . . . . . . . . 11 (𝑦 = 𝑎𝐵 = 𝑎 / 𝑥𝐴)
5453negeqd 10903 . . . . . . . . . 10 (𝑦 = 𝑎 → -𝐵 = -𝑎 / 𝑥𝐴)
5548, 54eqeq12d 2775 . . . . . . . . 9 (𝑦 = 𝑎 → (𝐶 = -𝐵-𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴))
5642, 55imbi12d 349 . . . . . . . 8 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵) ↔ ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)))
57 oddcomabszz.3 . . . . . . . 8 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
5840, 56, 57chvarfv 2241 . . . . . . 7 ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
5958adantr 485 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6034ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
61 absnid 14691 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6260, 61sylancom 592 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6362csbeq1d 3805 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6419adantr 485 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ∈ ℝ)
65 znegcl 12041 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
66 nfv 1916 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)
67 nfcsb1v 3825 . . . . . . . . . . . . . . 15 𝑥-𝑎 / 𝑥𝐴
6822, 23, 67nfbr 5072 . . . . . . . . . . . . . 14 𝑥0 ≤ -𝑎 / 𝑥𝐴
6966, 68nfim 1898 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
70 negex 10907 . . . . . . . . . . . . 13 -𝑎 ∈ V
71 eleq1 2838 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
72 breq2 5029 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ -𝑎))
7371, 723anbi23d 1437 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)))
74 csbeq1a 3815 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎𝐴 = -𝑎 / 𝑥𝐴)
7574breq2d 5037 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
7673, 75imbi12d 349 . . . . . . . . . . . . 13 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)))
7769, 70, 76, 30vtoclf 3474 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
78773expia 1119 . . . . . . . . . . 11 ((𝜑 ∧ -𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
7965, 78sylan2 596 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8058breq2d 5037 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 / 𝑥𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8179, 80sylibd 242 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8234adantl 486 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
8382le0neg1d 11234 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 ↔ 0 ≤ -𝑎))
8419le0neg1d 11234 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 / 𝑥𝐴 ≤ 0 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8581, 83, 843imtr4d 298 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 → 𝑎 / 𝑥𝐴 ≤ 0))
8685imp 411 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ≤ 0)
8764, 86absnidd 14806 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = -𝑎 / 𝑥𝐴)
8859, 63, 873eqtr4rd 2805 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
89 0re 10666 . . . . . . 7 0 ∈ ℝ
90 letric 10763 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎𝑎 ≤ 0))
9189, 34, 90sylancr 591 . . . . . 6 (𝑎 ∈ ℤ → (0 ≤ 𝑎𝑎 ≤ 0))
9291adantl 486 . . . . 5 ((𝜑𝑎 ∈ ℤ) → (0 ≤ 𝑎𝑎 ≤ 0))
9339, 88, 92mpjaodan 957 . . . 4 ((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
948, 93vtoclg 3483 . . 3 (𝐷 ∈ ℤ → ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
9594anabsi7 671 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)
96 nfcvd 2918 . . . . 5 (𝐷 ∈ ℤ → 𝑥𝐸)
97 oddcomabszz.6 . . . . 5 (𝑥 = 𝐷𝐴 = 𝐸)
9896, 97csbiegf 3834 . . . 4 (𝐷 ∈ ℤ → 𝐷 / 𝑥𝐴 = 𝐸)
9998fveq2d 6655 . . 3 (𝐷 ∈ ℤ → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
10099adantl 486 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
101 fvex 6664 . . . 4 (abs‘𝐷) ∈ V
102 oddcomabszz.7 . . . 4 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
103101, 102csbie 3836 . . 3 (abs‘𝐷) / 𝑥𝐴 = 𝐹
104103a1i 11 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷) / 𝑥𝐴 = 𝐹)
10595, 100, 1043eqtr3d 2802 1 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  csb 3801   class class class wbr 5025  cfv 6328  cr 10559  0cc0 10560  cle 10699  -cneg 10894  cz 12005  abscabs 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-sup 8924  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-seq 13404  df-exp 13465  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628
This theorem is referenced by:  rmyabs  40257
  Copyright terms: Public domain W3C validator