Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Visualization version   GIF version

Theorem oddcomabszz 42901
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
oddcomabszz.2 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
oddcomabszz.3 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
oddcomabszz.4 (𝑥 = 𝑦𝐴 = 𝐵)
oddcomabszz.5 (𝑥 = -𝑦𝐴 = 𝐶)
oddcomabszz.6 (𝑥 = 𝐷𝐴 = 𝐸)
oddcomabszz.7 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
Assertion
Ref Expression
oddcomabszz ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝑥,𝐹   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑦)   𝐸(𝑦)   𝐹(𝑦)

Proof of Theorem oddcomabszz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . . . . 6 (𝑎 = 𝐷 → (𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ))
21anbi2d 629 . . . . 5 (𝑎 = 𝐷 → ((𝜑𝑎 ∈ ℤ) ↔ (𝜑𝐷 ∈ ℤ)))
3 csbeq1 3924 . . . . . . 7 (𝑎 = 𝐷𝑎 / 𝑥𝐴 = 𝐷 / 𝑥𝐴)
43fveq2d 6924 . . . . . 6 (𝑎 = 𝐷 → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝐷 / 𝑥𝐴))
5 fveq2 6920 . . . . . . 7 (𝑎 = 𝐷 → (abs‘𝑎) = (abs‘𝐷))
65csbeq1d 3925 . . . . . 6 (𝑎 = 𝐷(abs‘𝑎) / 𝑥𝐴 = (abs‘𝐷) / 𝑥𝐴)
74, 6eqeq12d 2756 . . . . 5 (𝑎 = 𝐷 → ((abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴 ↔ (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
82, 7imbi12d 344 . . . 4 (𝑎 = 𝐷 → (((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴) ↔ ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)))
9 nfv 1913 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ)
10 nfcsb1v 3946 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐴
1110nfel1 2925 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐴 ∈ ℝ
129, 11nfim 1895 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
13 eleq1 2832 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1413anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
15 csbeq1a 3935 . . . . . . . . . . 11 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
1615eleq1d 2829 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐴 ∈ ℝ ↔ 𝑎 / 𝑥𝐴 ∈ ℝ))
1714, 16imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)))
18 oddcomabszz.1 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
1912, 17, 18chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
2019adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 / 𝑥𝐴 ∈ ℝ)
21 nfv 1913 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)
22 nfcv 2908 . . . . . . . . . . 11 𝑥0
23 nfcv 2908 . . . . . . . . . . 11 𝑥
2422, 23, 10nfbr 5213 . . . . . . . . . 10 𝑥0 ≤ 𝑎 / 𝑥𝐴
2521, 24nfim 1895 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
26 breq2 5170 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2713, 263anbi23d 1439 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)))
2815breq2d 5178 . . . . . . . . . 10 (𝑥 = 𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥𝐴))
2927, 28imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)))
30 oddcomabszz.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
3125, 29, 30chvarfv 2241 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
32313expa 1118 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
3320, 32absidd 15471 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = 𝑎 / 𝑥𝐴)
34 zre 12643 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
3534ad2antlr 726 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℝ)
36 absid 15345 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3735, 36sylancom 587 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3837csbeq1d 3925 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
3933, 38eqtr4d 2783 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
40 nfv 1913 . . . . . . . 8 𝑦((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
41 eleq1 2832 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
4241anbi2d 629 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
43 negex 11534 . . . . . . . . . . . 12 -𝑦 ∈ V
44 oddcomabszz.5 . . . . . . . . . . . 12 (𝑥 = -𝑦𝐴 = 𝐶)
4543, 44csbie 3957 . . . . . . . . . . 11 -𝑦 / 𝑥𝐴 = 𝐶
46 negeq 11528 . . . . . . . . . . . 12 (𝑦 = 𝑎 → -𝑦 = -𝑎)
4746csbeq1d 3925 . . . . . . . . . . 11 (𝑦 = 𝑎-𝑦 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
4845, 47eqtr3id 2794 . . . . . . . . . 10 (𝑦 = 𝑎𝐶 = -𝑎 / 𝑥𝐴)
49 vex 3492 . . . . . . . . . . . . 13 𝑦 ∈ V
50 oddcomabszz.4 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐴 = 𝐵)
5149, 50csbie 3957 . . . . . . . . . . . 12 𝑦 / 𝑥𝐴 = 𝐵
52 csbeq1 3924 . . . . . . . . . . . 12 (𝑦 = 𝑎𝑦 / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
5351, 52eqtr3id 2794 . . . . . . . . . . 11 (𝑦 = 𝑎𝐵 = 𝑎 / 𝑥𝐴)
5453negeqd 11530 . . . . . . . . . 10 (𝑦 = 𝑎 → -𝐵 = -𝑎 / 𝑥𝐴)
5548, 54eqeq12d 2756 . . . . . . . . 9 (𝑦 = 𝑎 → (𝐶 = -𝐵-𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴))
5642, 55imbi12d 344 . . . . . . . 8 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵) ↔ ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)))
57 oddcomabszz.3 . . . . . . . 8 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
5840, 56, 57chvarfv 2241 . . . . . . 7 ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
5958adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6034ad2antlr 726 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
61 absnid 15347 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6260, 61sylancom 587 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6362csbeq1d 3925 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6419adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ∈ ℝ)
65 znegcl 12678 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
66 nfv 1913 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)
67 nfcsb1v 3946 . . . . . . . . . . . . . . 15 𝑥-𝑎 / 𝑥𝐴
6822, 23, 67nfbr 5213 . . . . . . . . . . . . . 14 𝑥0 ≤ -𝑎 / 𝑥𝐴
6966, 68nfim 1895 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
70 negex 11534 . . . . . . . . . . . . 13 -𝑎 ∈ V
71 eleq1 2832 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
72 breq2 5170 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ -𝑎))
7371, 723anbi23d 1439 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)))
74 csbeq1a 3935 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎𝐴 = -𝑎 / 𝑥𝐴)
7574breq2d 5178 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
7673, 75imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)))
7769, 70, 76, 30vtoclf 3576 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
78773expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ -𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
7965, 78sylan2 592 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8058breq2d 5178 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 / 𝑥𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8179, 80sylibd 239 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8234adantl 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
8382le0neg1d 11861 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 ↔ 0 ≤ -𝑎))
8419le0neg1d 11861 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 / 𝑥𝐴 ≤ 0 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8581, 83, 843imtr4d 294 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 → 𝑎 / 𝑥𝐴 ≤ 0))
8685imp 406 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ≤ 0)
8764, 86absnidd 15462 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = -𝑎 / 𝑥𝐴)
8859, 63, 873eqtr4rd 2791 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
89 0re 11292 . . . . . . 7 0 ∈ ℝ
90 letric 11390 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎𝑎 ≤ 0))
9189, 34, 90sylancr 586 . . . . . 6 (𝑎 ∈ ℤ → (0 ≤ 𝑎𝑎 ≤ 0))
9291adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℤ) → (0 ≤ 𝑎𝑎 ≤ 0))
9339, 88, 92mpjaodan 959 . . . 4 ((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
948, 93vtoclg 3566 . . 3 (𝐷 ∈ ℤ → ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
9594anabsi7 670 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)
96 nfcvd 2909 . . . . 5 (𝐷 ∈ ℤ → 𝑥𝐸)
97 oddcomabszz.6 . . . . 5 (𝑥 = 𝐷𝐴 = 𝐸)
9896, 97csbiegf 3955 . . . 4 (𝐷 ∈ ℤ → 𝐷 / 𝑥𝐴 = 𝐸)
9998fveq2d 6924 . . 3 (𝐷 ∈ ℤ → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
10099adantl 481 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
101 fvex 6933 . . . 4 (abs‘𝐷) ∈ V
102 oddcomabszz.7 . . . 4 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
103101, 102csbie 3957 . . 3 (abs‘𝐷) / 𝑥𝐴 = 𝐹
104103a1i 11 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷) / 𝑥𝐴 = 𝐹)
10595, 100, 1043eqtr3d 2788 1 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  csb 3921   class class class wbr 5166  cfv 6573  cr 11183  0cc0 11184  cle 11325  -cneg 11521  cz 12639  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  rmyabs  42915
  Copyright terms: Public domain W3C validator