Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptdivc Structured version   Visualization version   GIF version

Theorem dvnmptdivc 46061
Description: Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptdivc.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptdivc.x (𝜑𝑋𝑆)
dvnmptdivc.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvnmptdivc.b ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
dvnmptdivc.dvn ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
dvnmptdivc.c (𝜑𝐶 ∈ ℂ)
dvnmptdivc.cne0 (𝜑𝐶 ≠ 0)
dvnmptdivc.8 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
dvnmptdivc ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐶   𝑛,𝑀,𝑥   𝑆,𝑛,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑛)   𝐶(𝑛)

Proof of Theorem dvnmptdivc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝑛 ∈ (0...𝑀))
2 simpl 482 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝜑)
3 fveq2 6828 . . . . 5 (𝑘 = 0 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0))
4 csbeq1 3849 . . . . . . 7 (𝑘 = 0 → 𝑘 / 𝑛𝐵 = 0 / 𝑛𝐵)
54oveq1d 7367 . . . . . 6 (𝑘 = 0 → (𝑘 / 𝑛𝐵 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
65mpteq2dv 5187 . . . . 5 (𝑘 = 0 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
73, 6eqeq12d 2749 . . . 4 (𝑘 = 0 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
87imbi2d 340 . . 3 (𝑘 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))))
9 fveq2 6828 . . . . 5 (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))
10 csbeq1 3849 . . . . . . 7 (𝑘 = 𝑗𝑘 / 𝑛𝐵 = 𝑗 / 𝑛𝐵)
1110oveq1d 7367 . . . . . 6 (𝑘 = 𝑗 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝑗 / 𝑛𝐵 / 𝐶))
1211mpteq2dv 5187 . . . . 5 (𝑘 = 𝑗 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
139, 12eqeq12d 2749 . . . 4 (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
1413imbi2d 340 . . 3 (𝑘 = 𝑗 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))))
15 fveq2 6828 . . . . 5 (𝑘 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
16 csbeq1 3849 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝑘 / 𝑛𝐵 = (𝑗 + 1) / 𝑛𝐵)
1716oveq1d 7367 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝑘 / 𝑛𝐵 / 𝐶) = ((𝑗 + 1) / 𝑛𝐵 / 𝐶))
1817mpteq2dv 5187 . . . . 5 (𝑘 = (𝑗 + 1) → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
1915, 18eqeq12d 2749 . . . 4 (𝑘 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶))))
2019imbi2d 340 . . 3 (𝑘 = (𝑗 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
21 fveq2 6828 . . . . 5 (𝑘 = 𝑛 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛))
22 csbeq1a 3860 . . . . . . . . 9 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
2322equcoms 2021 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑘 / 𝑛𝐵)
2423eqcomd 2739 . . . . . . 7 (𝑘 = 𝑛𝑘 / 𝑛𝐵 = 𝐵)
2524oveq1d 7367 . . . . . 6 (𝑘 = 𝑛 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝐵 / 𝐶))
2625mpteq2dv 5187 . . . . 5 (𝑘 = 𝑛 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
2721, 26eqeq12d 2749 . . . 4 (𝑘 = 𝑛 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2827imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))))
29 dvnmptdivc.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
30 recnprss 25833 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3129, 30syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
32 cnex 11094 . . . . . . . 8 ℂ ∈ V
3332a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
34 dvnmptdivc.a . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
35 dvnmptdivc.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
37 dvnmptdivc.cne0 . . . . . . . . . 10 (𝜑𝐶 ≠ 0)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
3934, 36, 38divcld 11904 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) ∈ ℂ)
4039fmpttd 7054 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ)
41 dvnmptdivc.x . . . . . . 7 (𝜑𝑋𝑆)
42 elpm2r 8775 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
4333, 29, 40, 41, 42syl22anc 838 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
44 dvn0 25854 . . . . . 6 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
4531, 43, 44syl2anc 584 . . . . 5 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
46 id 22 . . . . . . . . . . . 12 (𝜑𝜑)
47 dvnmptdivc.8 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
48 nn0uz 12776 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4947, 48eleqtrdi 2843 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
50 eluzfz1 13433 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
5149, 50syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
52 nfv 1915 . . . . . . . . . . . . . 14 𝑛(𝜑 ∧ 0 ∈ (0...𝑀))
53 nfcv 2895 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)
54 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑛𝑋
55 nfcsb1v 3870 . . . . . . . . . . . . . . . 16 𝑛0 / 𝑛𝐵
5654, 55nfmpt 5191 . . . . . . . . . . . . . . 15 𝑛(𝑥𝑋0 / 𝑛𝐵)
5753, 56nfeq 2909 . . . . . . . . . . . . . 14 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)
5852, 57nfim 1897 . . . . . . . . . . . . 13 𝑛((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
59 c0ex 11113 . . . . . . . . . . . . 13 0 ∈ V
60 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑛 ∈ (0...𝑀) ↔ 0 ∈ (0...𝑀)))
6160anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 0 ∈ (0...𝑀))))
62 fveq2 6828 . . . . . . . . . . . . . . 15 (𝑛 = 0 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0))
63 csbeq1a 3860 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝐵 = 0 / 𝑛𝐵)
6463mpteq2dv 5187 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑥𝑋𝐵) = (𝑥𝑋0 / 𝑛𝐵))
6562, 64eqeq12d 2749 . . . . . . . . . . . . . 14 (𝑛 = 0 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)))
6661, 65imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))))
67 dvnmptdivc.dvn . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
6858, 59, 66, 67vtoclf 3518 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
6946, 51, 68syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
7069fveq1d 6830 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
7170adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
72 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
73 simpl 482 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝜑)
7451adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 0 ∈ (0...𝑀))
75 0re 11121 . . . . . . . . . . . 12 0 ∈ ℝ
76 nfcv 2895 . . . . . . . . . . . . 13 𝑛0
77 nfv 1915 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))
78 nfcv 2895 . . . . . . . . . . . . . . 15 𝑛
7955, 78nfel 2910 . . . . . . . . . . . . . 14 𝑛0 / 𝑛𝐵 ∈ ℂ
8077, 79nfim 1897 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
81603anbi3d 1444 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))))
8263eleq1d 2818 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝐵 ∈ ℂ ↔ 0 / 𝑛𝐵 ∈ ℂ))
8381, 82imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)))
84 dvnmptdivc.b . . . . . . . . . . . . 13 ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
8576, 80, 83, 84vtoclgf 3522 . . . . . . . . . . . 12 (0 ∈ ℝ → ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ))
8675, 85ax-mp 5 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
8773, 72, 74, 86syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 ∈ ℂ)
88 eqid 2733 . . . . . . . . . . 11 (𝑥𝑋0 / 𝑛𝐵) = (𝑥𝑋0 / 𝑛𝐵)
8988fvmpt2 6946 . . . . . . . . . 10 ((𝑥𝑋0 / 𝑛𝐵 ∈ ℂ) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9072, 87, 89syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9171, 90eqtr2d 2769 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 = (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥))
9234fmpttd 7054 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
93 elpm2r 8775 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
9433, 29, 92, 41, 93syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
95 dvn0 25854 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9631, 94, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9796fveq1d 6830 . . . . . . . . 9 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
9897adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
99 eqid 2733 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
10099fvmpt2 6946 . . . . . . . . 9 ((𝑥𝑋𝐴 ∈ ℂ) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10172, 34, 100syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10291, 98, 1013eqtrrd 2773 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 = 0 / 𝑛𝐵)
103102oveq1d 7367 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
104103mpteq2dva 5186 . . . . 5 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
10545, 104eqtrd 2768 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
106105a1i 11 . . 3 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
107 simp3 1138 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
108 simp1 1136 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝑗 ∈ (0..^𝑀))
109 simpr 484 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
110 simpl 482 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
111109, 110mpd 15 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
1121113adant1 1130 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
11331ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑆 ⊆ ℂ)
11443ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
115 elfzofz 13577 . . . . . . . 8 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
116 elfznn0 13522 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
117116ad2antlr 727 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
118115, 117sylanl2 681 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
119 dvnp1 25855 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
120113, 114, 118, 119syl3anc 1373 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
121 oveq2 7360 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
122121adantl 481 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
12331adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
12443adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
125 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
126125, 116syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
127115, 126sylan2 593 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ ℕ0)
128123, 124, 127, 119syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
129128adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
13029adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
131 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ (0...𝑀))
13246ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝜑)
133 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
134132, 133, 1313jca 1128 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋𝑗 ∈ (0...𝑀)))
135 nfcv 2895 . . . . . . . . . . . . . 14 𝑛𝑗
136 nfv 1915 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝑋𝑗 ∈ (0...𝑀))
137135nfcsb1 3869 . . . . . . . . . . . . . . . 16 𝑛𝑗 / 𝑛𝐵
138137, 78nfel 2910 . . . . . . . . . . . . . . 15 𝑛𝑗 / 𝑛𝐵 ∈ ℂ
139136, 138nfim 1897 . . . . . . . . . . . . . 14 𝑛((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)
140 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛 ∈ (0...𝑀) ↔ 𝑗 ∈ (0...𝑀)))
1411403anbi3d 1444 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋𝑗 ∈ (0...𝑀))))
142 csbeq1a 3860 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗𝐵 = 𝑗 / 𝑛𝐵)
143142eleq1d 2818 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑛𝐵 ∈ ℂ))
144141, 143imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)))
145135, 139, 144, 84vtoclgf 3522 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ))
146131, 134, 145sylc 65 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
147115, 146sylanl2 681 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
148 fzofzp1 13666 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
149148ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) ∈ (0...𝑀))
150115, 132sylanl2 681 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝜑)
151 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
152150, 151, 1493jca 1128 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)))
153 nfcv 2895 . . . . . . . . . . . . 13 𝑛(𝑗 + 1)
154 nfv 1915 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))
155153nfcsb1 3869 . . . . . . . . . . . . . . 15 𝑛(𝑗 + 1) / 𝑛𝐵
156155, 78nfel 2910 . . . . . . . . . . . . . 14 𝑛(𝑗 + 1) / 𝑛𝐵 ∈ ℂ
157154, 156nfim 1897 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
158 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (𝑛 ∈ (0...𝑀) ↔ (𝑗 + 1) ∈ (0...𝑀)))
1591583anbi3d 1444 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))))
160 csbeq1a 3860 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑛𝐵)
161160eleq1d 2818 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (𝐵 ∈ ℂ ↔ (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
162159, 161imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)))
163153, 157, 162, 84vtoclgf 3522 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
164149, 152, 163sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
165 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝜑)
166115adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
167 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑛(𝜑𝑗 ∈ (0...𝑀))
168 nfcv 2895 . . . . . . . . . . . . . . . . . 18 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)
16954, 137nfmpt 5191 . . . . . . . . . . . . . . . . . 18 𝑛(𝑥𝑋𝑗 / 𝑛𝐵)
170168, 169nfeq 2909 . . . . . . . . . . . . . . . . 17 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)
171167, 170nfim 1897 . . . . . . . . . . . . . . . 16 𝑛((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
172140anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑗 ∈ (0...𝑀))))
173 fveq2 6828 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
174142mpteq2dv 5187 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (𝑥𝑋𝐵) = (𝑥𝑋𝑗 / 𝑛𝐵))
175173, 174eqeq12d 2749 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)))
176172, 175imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))))
177171, 176, 67chvarfv 2245 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
178165, 166, 177syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
179178eqcomd 2739 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝑗 / 𝑛𝐵) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
180179oveq2d 7368 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
181165, 94syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
182 dvnp1 25855 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
183123, 181, 127, 182syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
184183eqcomd 2739 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
185148adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
186165, 185jca 511 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)))
187 nfv 1915 . . . . . . . . . . . . . . 15 𝑛(𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))
188 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1))
18954, 155nfmpt 5191 . . . . . . . . . . . . . . . 16 𝑛(𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
190188, 189nfeq 2909 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
191187, 190nfim 1897 . . . . . . . . . . . . . 14 𝑛((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
192158anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))))
193 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
194160mpteq2dv 5187 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → (𝑥𝑋𝐵) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
195193, 194eqeq12d 2749 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
196192, 195imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))))
197153, 191, 196, 67vtoclgf 3522 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
198185, 186, 197sylc 65 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
199180, 184, 1983eqtrd 2772 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
20035adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ∈ ℂ)
20137adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ≠ 0)
202130, 147, 164, 199, 200, 201dvmptdivc 25897 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
203202adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
204129, 122, 2033eqtrd 2772 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
205204eqcomd 2739 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
206205, 120, 1223eqtrrd 2773 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
207120, 122, 2063eqtrd 2772 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
208107, 108, 112, 207syl21anc 837 . . . 4 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
2092083exp 1119 . . 3 (𝑗 ∈ (0..^𝑀) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
2108, 14, 20, 28, 106, 209fzind2 13690 . 2 (𝑛 ∈ (0...𝑀) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2111, 2, 210sylc 65 1 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  csb 3846  wss 3898  {cpr 4577  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  pm cpm 8757  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   / cdiv 11781  0cn0 12388  cuz 12738  ...cfz 13409  ..^cfzo 13556   D cdv 25792   D𝑛 cdvn 25793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-dvn 25797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator