Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptdivc Structured version   Visualization version   GIF version

Theorem dvnmptdivc 45936
Description: Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptdivc.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptdivc.x (𝜑𝑋𝑆)
dvnmptdivc.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvnmptdivc.b ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
dvnmptdivc.dvn ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
dvnmptdivc.c (𝜑𝐶 ∈ ℂ)
dvnmptdivc.cne0 (𝜑𝐶 ≠ 0)
dvnmptdivc.8 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
dvnmptdivc ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐶   𝑛,𝑀,𝑥   𝑆,𝑛,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑛)   𝐶(𝑛)

Proof of Theorem dvnmptdivc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝑛 ∈ (0...𝑀))
2 simpl 482 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝜑)
3 fveq2 6858 . . . . 5 (𝑘 = 0 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0))
4 csbeq1 3865 . . . . . . 7 (𝑘 = 0 → 𝑘 / 𝑛𝐵 = 0 / 𝑛𝐵)
54oveq1d 7402 . . . . . 6 (𝑘 = 0 → (𝑘 / 𝑛𝐵 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
65mpteq2dv 5201 . . . . 5 (𝑘 = 0 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
73, 6eqeq12d 2745 . . . 4 (𝑘 = 0 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
87imbi2d 340 . . 3 (𝑘 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))))
9 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))
10 csbeq1 3865 . . . . . . 7 (𝑘 = 𝑗𝑘 / 𝑛𝐵 = 𝑗 / 𝑛𝐵)
1110oveq1d 7402 . . . . . 6 (𝑘 = 𝑗 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝑗 / 𝑛𝐵 / 𝐶))
1211mpteq2dv 5201 . . . . 5 (𝑘 = 𝑗 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
139, 12eqeq12d 2745 . . . 4 (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
1413imbi2d 340 . . 3 (𝑘 = 𝑗 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))))
15 fveq2 6858 . . . . 5 (𝑘 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
16 csbeq1 3865 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝑘 / 𝑛𝐵 = (𝑗 + 1) / 𝑛𝐵)
1716oveq1d 7402 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝑘 / 𝑛𝐵 / 𝐶) = ((𝑗 + 1) / 𝑛𝐵 / 𝐶))
1817mpteq2dv 5201 . . . . 5 (𝑘 = (𝑗 + 1) → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
1915, 18eqeq12d 2745 . . . 4 (𝑘 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶))))
2019imbi2d 340 . . 3 (𝑘 = (𝑗 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
21 fveq2 6858 . . . . 5 (𝑘 = 𝑛 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛))
22 csbeq1a 3876 . . . . . . . . 9 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
2322equcoms 2020 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑘 / 𝑛𝐵)
2423eqcomd 2735 . . . . . . 7 (𝑘 = 𝑛𝑘 / 𝑛𝐵 = 𝐵)
2524oveq1d 7402 . . . . . 6 (𝑘 = 𝑛 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝐵 / 𝐶))
2625mpteq2dv 5201 . . . . 5 (𝑘 = 𝑛 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
2721, 26eqeq12d 2745 . . . 4 (𝑘 = 𝑛 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2827imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))))
29 dvnmptdivc.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
30 recnprss 25805 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3129, 30syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
32 cnex 11149 . . . . . . . 8 ℂ ∈ V
3332a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
34 dvnmptdivc.a . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
35 dvnmptdivc.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
37 dvnmptdivc.cne0 . . . . . . . . . 10 (𝜑𝐶 ≠ 0)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
3934, 36, 38divcld 11958 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) ∈ ℂ)
4039fmpttd 7087 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ)
41 dvnmptdivc.x . . . . . . 7 (𝜑𝑋𝑆)
42 elpm2r 8818 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
4333, 29, 40, 41, 42syl22anc 838 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
44 dvn0 25826 . . . . . 6 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
4531, 43, 44syl2anc 584 . . . . 5 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
46 id 22 . . . . . . . . . . . 12 (𝜑𝜑)
47 dvnmptdivc.8 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
48 nn0uz 12835 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4947, 48eleqtrdi 2838 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
50 eluzfz1 13492 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
5149, 50syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
52 nfv 1914 . . . . . . . . . . . . . 14 𝑛(𝜑 ∧ 0 ∈ (0...𝑀))
53 nfcv 2891 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)
54 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑛𝑋
55 nfcsb1v 3886 . . . . . . . . . . . . . . . 16 𝑛0 / 𝑛𝐵
5654, 55nfmpt 5205 . . . . . . . . . . . . . . 15 𝑛(𝑥𝑋0 / 𝑛𝐵)
5753, 56nfeq 2905 . . . . . . . . . . . . . 14 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)
5852, 57nfim 1896 . . . . . . . . . . . . 13 𝑛((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
59 c0ex 11168 . . . . . . . . . . . . 13 0 ∈ V
60 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑛 ∈ (0...𝑀) ↔ 0 ∈ (0...𝑀)))
6160anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 0 ∈ (0...𝑀))))
62 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = 0 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0))
63 csbeq1a 3876 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝐵 = 0 / 𝑛𝐵)
6463mpteq2dv 5201 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑥𝑋𝐵) = (𝑥𝑋0 / 𝑛𝐵))
6562, 64eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑛 = 0 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)))
6661, 65imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))))
67 dvnmptdivc.dvn . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
6858, 59, 66, 67vtoclf 3530 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
6946, 51, 68syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
7069fveq1d 6860 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
7170adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
72 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
73 simpl 482 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝜑)
7451adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 0 ∈ (0...𝑀))
75 0re 11176 . . . . . . . . . . . 12 0 ∈ ℝ
76 nfcv 2891 . . . . . . . . . . . . 13 𝑛0
77 nfv 1914 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))
78 nfcv 2891 . . . . . . . . . . . . . . 15 𝑛
7955, 78nfel 2906 . . . . . . . . . . . . . 14 𝑛0 / 𝑛𝐵 ∈ ℂ
8077, 79nfim 1896 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
81603anbi3d 1444 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))))
8263eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝐵 ∈ ℂ ↔ 0 / 𝑛𝐵 ∈ ℂ))
8381, 82imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)))
84 dvnmptdivc.b . . . . . . . . . . . . 13 ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
8576, 80, 83, 84vtoclgf 3535 . . . . . . . . . . . 12 (0 ∈ ℝ → ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ))
8675, 85ax-mp 5 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
8773, 72, 74, 86syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 ∈ ℂ)
88 eqid 2729 . . . . . . . . . . 11 (𝑥𝑋0 / 𝑛𝐵) = (𝑥𝑋0 / 𝑛𝐵)
8988fvmpt2 6979 . . . . . . . . . 10 ((𝑥𝑋0 / 𝑛𝐵 ∈ ℂ) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9072, 87, 89syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9171, 90eqtr2d 2765 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 = (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥))
9234fmpttd 7087 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
93 elpm2r 8818 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
9433, 29, 92, 41, 93syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
95 dvn0 25826 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9631, 94, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9796fveq1d 6860 . . . . . . . . 9 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
9897adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
99 eqid 2729 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
10099fvmpt2 6979 . . . . . . . . 9 ((𝑥𝑋𝐴 ∈ ℂ) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10172, 34, 100syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10291, 98, 1013eqtrrd 2769 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 = 0 / 𝑛𝐵)
103102oveq1d 7402 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
104103mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
10545, 104eqtrd 2764 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
106105a1i 11 . . 3 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
107 simp3 1138 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
108 simp1 1136 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝑗 ∈ (0..^𝑀))
109 simpr 484 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
110 simpl 482 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
111109, 110mpd 15 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
1121113adant1 1130 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
11331ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑆 ⊆ ℂ)
11443ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
115 elfzofz 13636 . . . . . . . 8 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
116 elfznn0 13581 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
117116ad2antlr 727 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
118115, 117sylanl2 681 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
119 dvnp1 25827 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
120113, 114, 118, 119syl3anc 1373 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
121 oveq2 7395 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
122121adantl 481 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
12331adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
12443adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
125 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
126125, 116syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
127115, 126sylan2 593 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ ℕ0)
128123, 124, 127, 119syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
129128adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
13029adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
131 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ (0...𝑀))
13246ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝜑)
133 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
134132, 133, 1313jca 1128 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋𝑗 ∈ (0...𝑀)))
135 nfcv 2891 . . . . . . . . . . . . . 14 𝑛𝑗
136 nfv 1914 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝑋𝑗 ∈ (0...𝑀))
137135nfcsb1 3885 . . . . . . . . . . . . . . . 16 𝑛𝑗 / 𝑛𝐵
138137, 78nfel 2906 . . . . . . . . . . . . . . 15 𝑛𝑗 / 𝑛𝐵 ∈ ℂ
139136, 138nfim 1896 . . . . . . . . . . . . . 14 𝑛((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)
140 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛 ∈ (0...𝑀) ↔ 𝑗 ∈ (0...𝑀)))
1411403anbi3d 1444 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋𝑗 ∈ (0...𝑀))))
142 csbeq1a 3876 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗𝐵 = 𝑗 / 𝑛𝐵)
143142eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑛𝐵 ∈ ℂ))
144141, 143imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)))
145135, 139, 144, 84vtoclgf 3535 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ))
146131, 134, 145sylc 65 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
147115, 146sylanl2 681 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
148 fzofzp1 13725 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
149148ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) ∈ (0...𝑀))
150115, 132sylanl2 681 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝜑)
151 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
152150, 151, 1493jca 1128 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)))
153 nfcv 2891 . . . . . . . . . . . . 13 𝑛(𝑗 + 1)
154 nfv 1914 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))
155153nfcsb1 3885 . . . . . . . . . . . . . . 15 𝑛(𝑗 + 1) / 𝑛𝐵
156155, 78nfel 2906 . . . . . . . . . . . . . 14 𝑛(𝑗 + 1) / 𝑛𝐵 ∈ ℂ
157154, 156nfim 1896 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
158 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (𝑛 ∈ (0...𝑀) ↔ (𝑗 + 1) ∈ (0...𝑀)))
1591583anbi3d 1444 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))))
160 csbeq1a 3876 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑛𝐵)
161160eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (𝐵 ∈ ℂ ↔ (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
162159, 161imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)))
163153, 157, 162, 84vtoclgf 3535 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
164149, 152, 163sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
165 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝜑)
166115adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
167 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑛(𝜑𝑗 ∈ (0...𝑀))
168 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)
16954, 137nfmpt 5205 . . . . . . . . . . . . . . . . . 18 𝑛(𝑥𝑋𝑗 / 𝑛𝐵)
170168, 169nfeq 2905 . . . . . . . . . . . . . . . . 17 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)
171167, 170nfim 1896 . . . . . . . . . . . . . . . 16 𝑛((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
172140anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑗 ∈ (0...𝑀))))
173 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
174142mpteq2dv 5201 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (𝑥𝑋𝐵) = (𝑥𝑋𝑗 / 𝑛𝐵))
175173, 174eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)))
176172, 175imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))))
177171, 176, 67chvarfv 2241 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
178165, 166, 177syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
179178eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝑗 / 𝑛𝐵) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
180179oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
181165, 94syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
182 dvnp1 25827 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
183123, 181, 127, 182syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
184183eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
185148adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
186165, 185jca 511 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)))
187 nfv 1914 . . . . . . . . . . . . . . 15 𝑛(𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))
188 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1))
18954, 155nfmpt 5205 . . . . . . . . . . . . . . . 16 𝑛(𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
190188, 189nfeq 2905 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
191187, 190nfim 1896 . . . . . . . . . . . . . 14 𝑛((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
192158anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))))
193 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
194160mpteq2dv 5201 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → (𝑥𝑋𝐵) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
195193, 194eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
196192, 195imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))))
197153, 191, 196, 67vtoclgf 3535 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
198185, 186, 197sylc 65 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
199180, 184, 1983eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
20035adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ∈ ℂ)
20137adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ≠ 0)
202130, 147, 164, 199, 200, 201dvmptdivc 25869 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
203202adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
204129, 122, 2033eqtrd 2768 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
205204eqcomd 2735 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
206205, 120, 1223eqtrrd 2769 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
207120, 122, 2063eqtrd 2768 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
208107, 108, 112, 207syl21anc 837 . . . 4 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
2092083exp 1119 . . 3 (𝑗 ∈ (0..^𝑀) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
2108, 14, 20, 28, 106, 209fzind2 13746 . 2 (𝑛 ∈ (0...𝑀) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2111, 2, 210sylc 65 1 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  csb 3862  wss 3914  {cpr 4591  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   / cdiv 11835  0cn0 12442  cuz 12793  ...cfz 13468  ..^cfzo 13615   D cdv 25764   D𝑛 cdvn 25765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-dvn 25769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator