| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | suceq 6449 | . . 3
⊢ (𝑐 = (rank‘𝑎) → suc 𝑐 = suc (rank‘𝑎)) | 
| 2 | 1 | fveq2d 6909 | . 2
⊢ (𝑐 = (rank‘𝑎) → (𝑧‘suc 𝑐) = (𝑧‘suc (rank‘𝑎))) | 
| 3 |  | aomclem4.f | . 2
⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | 
| 4 |  | r1fnon 9808 | . . . . . . . . . . . . . 14
⊢
𝑅1 Fn On | 
| 5 |  | fnfun 6667 | . . . . . . . . . . . . . 14
⊢
(𝑅1 Fn On → Fun
𝑅1) | 
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ Fun
𝑅1 | 
| 7 | 4 | fndmi 6671 | . . . . . . . . . . . . . 14
⊢ dom
𝑅1 = On | 
| 8 | 7 | eqimss2i 4044 | . . . . . . . . . . . . 13
⊢ On
⊆ dom 𝑅1 | 
| 9 | 6, 8 | pm3.2i 470 | . . . . . . . . . . . 12
⊢ (Fun
𝑅1 ∧ On ⊆ dom
𝑅1) | 
| 10 |  | aomclem4.on | . . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑧 ∈ On) | 
| 11 |  | funfvima2 7252 | . . . . . . . . . . . 12
⊢ ((Fun
𝑅1 ∧ On ⊆ dom 𝑅1) → (dom
𝑧 ∈ On →
(𝑅1‘dom 𝑧) ∈ (𝑅1 “
On))) | 
| 12 | 9, 10, 11 | mpsyl 68 | . . . . . . . . . . 11
⊢ (𝜑 →
(𝑅1‘dom 𝑧) ∈ (𝑅1 “
On)) | 
| 13 |  | elssuni 4936 | . . . . . . . . . . 11
⊢
((𝑅1‘dom 𝑧) ∈ (𝑅1 “ On)
→ (𝑅1‘dom 𝑧) ⊆ ∪
(𝑅1 “ On)) | 
| 14 | 12, 13 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 →
(𝑅1‘dom 𝑧) ⊆ ∪
(𝑅1 “ On)) | 
| 15 | 14 | sselda 3982 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (𝑅1‘dom
𝑧)) → 𝑏 ∈ ∪ (𝑅1 “ On)) | 
| 16 |  | rankidb 9841 | . . . . . . . . 9
⊢ (𝑏 ∈ ∪ (𝑅1 “ On) → 𝑏 ∈
(𝑅1‘suc (rank‘𝑏))) | 
| 17 | 15, 16 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (𝑅1‘dom
𝑧)) → 𝑏 ∈
(𝑅1‘suc (rank‘𝑏))) | 
| 18 |  | suceq 6449 | . . . . . . . . . 10
⊢
((rank‘𝑏) =
(rank‘𝑎) → suc
(rank‘𝑏) = suc
(rank‘𝑎)) | 
| 19 | 18 | fveq2d 6909 | . . . . . . . . 9
⊢
((rank‘𝑏) =
(rank‘𝑎) →
(𝑅1‘suc (rank‘𝑏)) = (𝑅1‘suc
(rank‘𝑎))) | 
| 20 | 19 | eleq2d 2826 | . . . . . . . 8
⊢
((rank‘𝑏) =
(rank‘𝑎) →
(𝑏 ∈
(𝑅1‘suc (rank‘𝑏)) ↔ 𝑏 ∈ (𝑅1‘suc
(rank‘𝑎)))) | 
| 21 | 17, 20 | syl5ibcom 245 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝑅1‘dom
𝑧)) →
((rank‘𝑏) =
(rank‘𝑎) → 𝑏 ∈
(𝑅1‘suc (rank‘𝑎)))) | 
| 22 | 21 | expimpd 453 | . . . . . 6
⊢ (𝜑 → ((𝑏 ∈ (𝑅1‘dom
𝑧) ∧ (rank‘𝑏) = (rank‘𝑎)) → 𝑏 ∈ (𝑅1‘suc
(rank‘𝑎)))) | 
| 23 | 22 | ss2abdv 4065 | . . . . 5
⊢ (𝜑 → {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom
𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} ⊆ {𝑏 ∣ 𝑏 ∈ (𝑅1‘suc
(rank‘𝑎))}) | 
| 24 |  | df-rab 3436 | . . . . 5
⊢ {𝑏 ∈
(𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} = {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom
𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} | 
| 25 |  | abid1 2877 | . . . . 5
⊢
(𝑅1‘suc (rank‘𝑎)) = {𝑏 ∣ 𝑏 ∈ (𝑅1‘suc
(rank‘𝑎))} | 
| 26 | 23, 24, 25 | 3sstr4g 4036 | . . . 4
⊢ (𝜑 → {𝑏 ∈ (𝑅1‘dom
𝑧) ∣
(rank‘𝑏) =
(rank‘𝑎)} ⊆
(𝑅1‘suc (rank‘𝑎))) | 
| 27 | 26 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) → {𝑏 ∈
(𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc
(rank‘𝑎))) | 
| 28 |  | fveq2 6905 | . . . . 5
⊢ (𝑏 = suc (rank‘𝑎) → (𝑧‘𝑏) = (𝑧‘suc (rank‘𝑎))) | 
| 29 |  | fveq2 6905 | . . . . 5
⊢ (𝑏 = suc (rank‘𝑎) →
(𝑅1‘𝑏) = (𝑅1‘suc
(rank‘𝑎))) | 
| 30 | 28, 29 | weeq12d 5673 | . . . 4
⊢ (𝑏 = suc (rank‘𝑎) → ((𝑧‘𝑏) We (𝑅1‘𝑏) ↔ (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc
(rank‘𝑎)))) | 
| 31 |  | aomclem4.we | . . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | 
| 32 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑧‘𝑎) = (𝑧‘𝑏)) | 
| 33 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘𝑏)) | 
| 34 | 32, 33 | weeq12d 5673 | . . . . . . 7
⊢ (𝑎 = 𝑏 → ((𝑧‘𝑎) We (𝑅1‘𝑎) ↔ (𝑧‘𝑏) We (𝑅1‘𝑏))) | 
| 35 | 34 | cbvralvw 3236 | . . . . . 6
⊢
(∀𝑎 ∈
dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎) ↔ ∀𝑏 ∈ dom 𝑧(𝑧‘𝑏) We (𝑅1‘𝑏)) | 
| 36 | 31, 35 | sylib 218 | . . . . 5
⊢ (𝜑 → ∀𝑏 ∈ dom 𝑧(𝑧‘𝑏) We (𝑅1‘𝑏)) | 
| 37 | 36 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) → ∀𝑏 ∈ dom 𝑧(𝑧‘𝑏) We (𝑅1‘𝑏)) | 
| 38 |  | rankr1ai 9839 | . . . . . 6
⊢ (𝑎 ∈
(𝑅1‘dom 𝑧) → (rank‘𝑎) ∈ dom 𝑧) | 
| 39 | 38 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) →
(rank‘𝑎) ∈ dom
𝑧) | 
| 40 |  | eloni 6393 | . . . . . . . 8
⊢ (dom
𝑧 ∈ On → Ord dom
𝑧) | 
| 41 | 10, 40 | syl 17 | . . . . . . 7
⊢ (𝜑 → Ord dom 𝑧) | 
| 42 |  | aomclem4.su | . . . . . . 7
⊢ (𝜑 → dom 𝑧 = ∪ dom 𝑧) | 
| 43 |  | limsuc2 43058 | . . . . . . 7
⊢ ((Ord dom
𝑧 ∧ dom 𝑧 = ∪
dom 𝑧) →
((rank‘𝑎) ∈ dom
𝑧 ↔ suc
(rank‘𝑎) ∈ dom
𝑧)) | 
| 44 | 41, 42, 43 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧)) | 
| 45 | 44 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) →
((rank‘𝑎) ∈ dom
𝑧 ↔ suc
(rank‘𝑎) ∈ dom
𝑧)) | 
| 46 | 39, 45 | mpbid 232 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) → suc
(rank‘𝑎) ∈ dom
𝑧) | 
| 47 | 30, 37, 46 | rspcdva 3622 | . . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) → (𝑧‘suc (rank‘𝑎)) We
(𝑅1‘suc (rank‘𝑎))) | 
| 48 |  | wess 5670 | . . 3
⊢ ({𝑏 ∈
(𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc
(rank‘𝑎)) →
((𝑧‘suc
(rank‘𝑎)) We
(𝑅1‘suc (rank‘𝑎)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom
𝑧) ∣
(rank‘𝑏) =
(rank‘𝑎)})) | 
| 49 | 27, 47, 48 | sylc 65 | . 2
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑅1‘dom
𝑧)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom
𝑧) ∣
(rank‘𝑏) =
(rank‘𝑎)}) | 
| 50 |  | rankf 9835 | . . . 4
⊢
rank:∪ (𝑅1 “
On)⟶On | 
| 51 | 50 | a1i 11 | . . 3
⊢ (𝜑 → rank:∪ (𝑅1 “
On)⟶On) | 
| 52 | 51, 14 | fssresd 6774 | . 2
⊢ (𝜑 → (rank ↾
(𝑅1‘dom 𝑧)):(𝑅1‘dom 𝑧)⟶On) | 
| 53 |  | epweon 7796 | . . 3
⊢  E We
On | 
| 54 | 53 | a1i 11 | . 2
⊢ (𝜑 → E We On) | 
| 55 | 2, 3, 49, 52, 54 | fnwe2 43070 | 1
⊢ (𝜑 → 𝐹 We (𝑅1‘dom 𝑧)) |