Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Structured version   Visualization version   GIF version

Theorem aomclem4 43098
Description: Lemma for dfac11 43103. Limit case. Patch together well-orderings constructed so far using fnwe2 43094 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem4.on (𝜑 → dom 𝑧 ∈ On)
aomclem4.su (𝜑 → dom 𝑧 = dom 𝑧)
aomclem4.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem4 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑧,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑧,𝑎,𝑏)

Proof of Theorem aomclem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 suceq 6374 . . 3 (𝑐 = (rank‘𝑎) → suc 𝑐 = suc (rank‘𝑎))
21fveq2d 6826 . 2 (𝑐 = (rank‘𝑎) → (𝑧‘suc 𝑐) = (𝑧‘suc (rank‘𝑎)))
3 aomclem4.f . 2 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
4 r1fnon 9660 . . . . . . . . . . . . . 14 𝑅1 Fn On
5 fnfun 6581 . . . . . . . . . . . . . 14 (𝑅1 Fn On → Fun 𝑅1)
64, 5ax-mp 5 . . . . . . . . . . . . 13 Fun 𝑅1
74fndmi 6585 . . . . . . . . . . . . . 14 dom 𝑅1 = On
87eqimss2i 3991 . . . . . . . . . . . . 13 On ⊆ dom 𝑅1
96, 8pm3.2i 470 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ On ⊆ dom 𝑅1)
10 aomclem4.on . . . . . . . . . . . 12 (𝜑 → dom 𝑧 ∈ On)
11 funfvima2 7165 . . . . . . . . . . . 12 ((Fun 𝑅1 ∧ On ⊆ dom 𝑅1) → (dom 𝑧 ∈ On → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On)))
129, 10, 11mpsyl 68 . . . . . . . . . . 11 (𝜑 → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On))
13 elssuni 4887 . . . . . . . . . . 11 ((𝑅1‘dom 𝑧) ∈ (𝑅1 “ On) → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1514sselda 3929 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 (𝑅1 “ On))
16 rankidb 9693 . . . . . . . . 9 (𝑏 (𝑅1 “ On) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
1715, 16syl 17 . . . . . . . 8 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
18 suceq 6374 . . . . . . . . . 10 ((rank‘𝑏) = (rank‘𝑎) → suc (rank‘𝑏) = suc (rank‘𝑎))
1918fveq2d 6826 . . . . . . . . 9 ((rank‘𝑏) = (rank‘𝑎) → (𝑅1‘suc (rank‘𝑏)) = (𝑅1‘suc (rank‘𝑎)))
2019eleq2d 2817 . . . . . . . 8 ((rank‘𝑏) = (rank‘𝑎) → (𝑏 ∈ (𝑅1‘suc (rank‘𝑏)) ↔ 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2117, 20syl5ibcom 245 . . . . . . 7 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑏) = (rank‘𝑎) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2221expimpd 453 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2322ss2abdv 4012 . . . . 5 (𝜑 → {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} ⊆ {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))})
24 df-rab 3396 . . . . 5 {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} = {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))}
25 abid1 2867 . . . . 5 (𝑅1‘suc (rank‘𝑎)) = {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))}
2623, 24, 253sstr4g 3983 . . . 4 (𝜑 → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
2726adantr 480 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
28 fveq2 6822 . . . . 5 (𝑏 = suc (rank‘𝑎) → (𝑧𝑏) = (𝑧‘suc (rank‘𝑎)))
29 fveq2 6822 . . . . 5 (𝑏 = suc (rank‘𝑎) → (𝑅1𝑏) = (𝑅1‘suc (rank‘𝑎)))
3028, 29weeq12d 5603 . . . 4 (𝑏 = suc (rank‘𝑎) → ((𝑧𝑏) We (𝑅1𝑏) ↔ (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎))))
31 aomclem4.we . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
32 fveq2 6822 . . . . . . . 8 (𝑎 = 𝑏 → (𝑧𝑎) = (𝑧𝑏))
33 fveq2 6822 . . . . . . . 8 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
3432, 33weeq12d 5603 . . . . . . 7 (𝑎 = 𝑏 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧𝑏) We (𝑅1𝑏)))
3534cbvralvw 3210 . . . . . 6 (∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎) ↔ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
3631, 35sylib 218 . . . . 5 (𝜑 → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
3736adantr 480 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
38 rankr1ai 9691 . . . . . 6 (𝑎 ∈ (𝑅1‘dom 𝑧) → (rank‘𝑎) ∈ dom 𝑧)
3938adantl 481 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (rank‘𝑎) ∈ dom 𝑧)
40 eloni 6316 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
4110, 40syl 17 . . . . . . 7 (𝜑 → Ord dom 𝑧)
42 aomclem4.su . . . . . . 7 (𝜑 → dom 𝑧 = dom 𝑧)
43 limsuc2 43082 . . . . . . 7 ((Ord dom 𝑧 ∧ dom 𝑧 = dom 𝑧) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4441, 42, 43syl2anc 584 . . . . . 6 (𝜑 → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4544adantr 480 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4639, 45mpbid 232 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → suc (rank‘𝑎) ∈ dom 𝑧)
4730, 37, 46rspcdva 3573 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
48 wess 5600 . . 3 ({𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)) → ((𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)}))
4927, 47, 48sylc 65 . 2 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)})
50 rankf 9687 . . . 4 rank: (𝑅1 “ On)⟶On
5150a1i 11 . . 3 (𝜑 → rank: (𝑅1 “ On)⟶On)
5251, 14fssresd 6690 . 2 (𝜑 → (rank ↾ (𝑅1‘dom 𝑧)):(𝑅1‘dom 𝑧)⟶On)
53 epweon 7708 . . 3 E We On
5453a1i 11 . 2 (𝜑 → E We On)
552, 3, 49, 52, 54fnwe2 43094 1 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3897   cuni 4856   class class class wbr 5089  {copab 5151   E cep 5513   We wwe 5566  dom cdm 5614  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  aomclem5  43099
  Copyright terms: Public domain W3C validator