Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Structured version   Visualization version   GIF version

Theorem aomclem4 40001
Description: Lemma for dfac11 40006. Limit case. Patch together well-orderings constructed so far using fnwe2 39997 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem4.on (𝜑 → dom 𝑧 ∈ On)
aomclem4.su (𝜑 → dom 𝑧 = dom 𝑧)
aomclem4.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem4 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑧,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑧,𝑎,𝑏)

Proof of Theorem aomclem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 suceq 6224 . . 3 (𝑐 = (rank‘𝑎) → suc 𝑐 = suc (rank‘𝑎))
21fveq2d 6649 . 2 (𝑐 = (rank‘𝑎) → (𝑧‘suc 𝑐) = (𝑧‘suc (rank‘𝑎)))
3 aomclem4.f . 2 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
4 r1fnon 9180 . . . . . . . . . . . . . 14 𝑅1 Fn On
5 fnfun 6423 . . . . . . . . . . . . . 14 (𝑅1 Fn On → Fun 𝑅1)
64, 5ax-mp 5 . . . . . . . . . . . . 13 Fun 𝑅1
74fndmi 6426 . . . . . . . . . . . . . 14 dom 𝑅1 = On
87eqimss2i 3974 . . . . . . . . . . . . 13 On ⊆ dom 𝑅1
96, 8pm3.2i 474 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ On ⊆ dom 𝑅1)
10 aomclem4.on . . . . . . . . . . . 12 (𝜑 → dom 𝑧 ∈ On)
11 funfvima2 6971 . . . . . . . . . . . 12 ((Fun 𝑅1 ∧ On ⊆ dom 𝑅1) → (dom 𝑧 ∈ On → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On)))
129, 10, 11mpsyl 68 . . . . . . . . . . 11 (𝜑 → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On))
13 elssuni 4830 . . . . . . . . . . 11 ((𝑅1‘dom 𝑧) ∈ (𝑅1 “ On) → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1514sselda 3915 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 (𝑅1 “ On))
16 rankidb 9213 . . . . . . . . 9 (𝑏 (𝑅1 “ On) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
1715, 16syl 17 . . . . . . . 8 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
18 suceq 6224 . . . . . . . . . 10 ((rank‘𝑏) = (rank‘𝑎) → suc (rank‘𝑏) = suc (rank‘𝑎))
1918fveq2d 6649 . . . . . . . . 9 ((rank‘𝑏) = (rank‘𝑎) → (𝑅1‘suc (rank‘𝑏)) = (𝑅1‘suc (rank‘𝑎)))
2019eleq2d 2875 . . . . . . . 8 ((rank‘𝑏) = (rank‘𝑎) → (𝑏 ∈ (𝑅1‘suc (rank‘𝑏)) ↔ 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2117, 20syl5ibcom 248 . . . . . . 7 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑏) = (rank‘𝑎) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2221expimpd 457 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2322ss2abdv 3991 . . . . 5 (𝜑 → {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} ⊆ {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))})
24 df-rab 3115 . . . . 5 {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} = {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))}
25 abid1 2931 . . . . 5 (𝑅1‘suc (rank‘𝑎)) = {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))}
2623, 24, 253sstr4g 3960 . . . 4 (𝜑 → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
2726adantr 484 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
28 fveq2 6645 . . . . 5 (𝑏 = suc (rank‘𝑎) → (𝑧𝑏) = (𝑧‘suc (rank‘𝑎)))
29 fveq2 6645 . . . . 5 (𝑏 = suc (rank‘𝑎) → (𝑅1𝑏) = (𝑅1‘suc (rank‘𝑎)))
3028, 29weeq12d 39984 . . . 4 (𝑏 = suc (rank‘𝑎) → ((𝑧𝑏) We (𝑅1𝑏) ↔ (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎))))
31 aomclem4.we . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
32 fveq2 6645 . . . . . . . 8 (𝑎 = 𝑏 → (𝑧𝑎) = (𝑧𝑏))
33 fveq2 6645 . . . . . . . 8 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
3432, 33weeq12d 39984 . . . . . . 7 (𝑎 = 𝑏 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧𝑏) We (𝑅1𝑏)))
3534cbvralvw 3396 . . . . . 6 (∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎) ↔ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
3631, 35sylib 221 . . . . 5 (𝜑 → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
3736adantr 484 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
38 rankr1ai 9211 . . . . . 6 (𝑎 ∈ (𝑅1‘dom 𝑧) → (rank‘𝑎) ∈ dom 𝑧)
3938adantl 485 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (rank‘𝑎) ∈ dom 𝑧)
40 eloni 6169 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
4110, 40syl 17 . . . . . . 7 (𝜑 → Ord dom 𝑧)
42 aomclem4.su . . . . . . 7 (𝜑 → dom 𝑧 = dom 𝑧)
43 limsuc2 39985 . . . . . . 7 ((Ord dom 𝑧 ∧ dom 𝑧 = dom 𝑧) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4441, 42, 43syl2anc 587 . . . . . 6 (𝜑 → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4544adantr 484 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
4639, 45mpbid 235 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → suc (rank‘𝑎) ∈ dom 𝑧)
4730, 37, 46rspcdva 3573 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
48 wess 5506 . . 3 ({𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)) → ((𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)}))
4927, 47, 48sylc 65 . 2 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)})
50 rankf 9207 . . . 4 rank: (𝑅1 “ On)⟶On
5150a1i 11 . . 3 (𝜑 → rank: (𝑅1 “ On)⟶On)
5251, 14fssresd 6519 . 2 (𝜑 → (rank ↾ (𝑅1‘dom 𝑧)):(𝑅1‘dom 𝑧)⟶On)
53 epweon 7477 . . 3 E We On
5453a1i 11 . 2 (𝜑 → E We On)
552, 3, 49, 52, 54fnwe2 39997 1 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2776  wral 3106  {crab 3110  wss 3881   cuni 4800   class class class wbr 5030  {copab 5092   E cep 5429   We wwe 5477  dom cdm 5519  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  aomclem5  40002
  Copyright terms: Public domain W3C validator