| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43037. This is the beginning of the proof that
multiple
choice is equivalent to choice. Our goal is to construct, by
transfinite recursion, a well-ordering of (𝑅1‘𝐴). In what
follows, 𝐴 is the index of the rank we wish to
well-order, 𝑧 is
the collection of well-orderings constructed so far, dom 𝑧 is
the
set of ordinal indices of constructed ranks i.e. the next rank to
construct, and 𝑦 is a postulated multiple-choice
function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem1.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem1.on | ⊢ (𝜑 → dom 𝑧 ∈ On) |
| aomclem1.su | ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
| aomclem1.we | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
| Ref | Expression |
|---|---|
| aomclem1 | ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6899 | . . 3 ⊢ (𝑅1‘∪ dom 𝑧) ∈ V | |
| 2 | vex 3467 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 2 | dmex 7913 | . . . . . . 7 ⊢ dom 𝑧 ∈ V |
| 4 | 3 | uniex 7743 | . . . . . 6 ⊢ ∪ dom 𝑧 ∈ V |
| 5 | 4 | sucid 6446 | . . . . 5 ⊢ ∪ dom 𝑧 ∈ suc ∪ dom 𝑧 |
| 6 | aomclem1.su | . . . . 5 ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) | |
| 7 | 5, 6 | eleqtrrid 2840 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑧 ∈ dom 𝑧) |
| 8 | aomclem1.we | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | |
| 9 | fveq2 6886 | . . . . . 6 ⊢ (𝑎 = ∪ dom 𝑧 → (𝑧‘𝑎) = (𝑧‘∪ dom 𝑧)) | |
| 10 | fveq2 6886 | . . . . . 6 ⊢ (𝑎 = ∪ dom 𝑧 → (𝑅1‘𝑎) = (𝑅1‘∪ dom 𝑧)) | |
| 11 | 9, 10 | weeq12d 5654 | . . . . 5 ⊢ (𝑎 = ∪ dom 𝑧 → ((𝑧‘𝑎) We (𝑅1‘𝑎) ↔ (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧))) |
| 12 | 11 | rspcva 3603 | . . . 4 ⊢ ((∪ dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) → (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) |
| 13 | 7, 8, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) |
| 14 | aomclem1.b | . . . 4 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 15 | 14 | wepwso 43018 | . . 3 ⊢ (((𝑅1‘∪ dom 𝑧) ∈ V ∧ (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧)) |
| 16 | 1, 13, 15 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧)) |
| 17 | 6 | fveq2d 6890 | . . . 4 ⊢ (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc ∪ dom 𝑧)) |
| 18 | aomclem1.on | . . . . 5 ⊢ (𝜑 → dom 𝑧 ∈ On) | |
| 19 | onuni 7790 | . . . . 5 ⊢ (dom 𝑧 ∈ On → ∪ dom 𝑧 ∈ On) | |
| 20 | r1suc 9792 | . . . . 5 ⊢ (∪ dom 𝑧 ∈ On → (𝑅1‘suc ∪ dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅1‘suc ∪ dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) |
| 22 | 17, 21 | eqtrd 2769 | . . 3 ⊢ (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) |
| 23 | soeq2 5594 | . . 3 ⊢ ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧))) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧))) |
| 25 | 16, 24 | mpbird 257 | 1 ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3463 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 {copab 5185 Or wor 5571 We wwe 5616 dom cdm 5665 Oncon0 6363 suc csuc 6365 ‘cfv 6541 𝑅1cr1 9784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-map 8850 df-r1 9786 |
| This theorem is referenced by: aomclem2 43030 |
| Copyright terms: Public domain | W3C validator |