Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem1 Structured version   Visualization version   GIF version

Theorem aomclem1 43043
Description: Lemma for dfac11 43051. This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of (𝑅1𝐴). In what follows, 𝐴 is the index of the rank we wish to well-order, 𝑧 is the collection of well-orderings constructed so far, dom 𝑧 is the set of ordinal indices of constructed ranks i.e. the next rank to construct, and 𝑦 is a postulated multiple-choice function.

Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypotheses
Ref Expression
aomclem1.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem1.on (𝜑 → dom 𝑧 ∈ On)
aomclem1.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem1.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Distinct variable group:   𝑧,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem1
StepHypRef Expression
1 fvex 6871 . . 3 (𝑅1 dom 𝑧) ∈ V
2 vex 3451 . . . . . . . 8 𝑧 ∈ V
32dmex 7885 . . . . . . 7 dom 𝑧 ∈ V
43uniex 7717 . . . . . 6 dom 𝑧 ∈ V
54sucid 6416 . . . . 5 dom 𝑧 ∈ suc dom 𝑧
6 aomclem1.su . . . . 5 (𝜑 → dom 𝑧 = suc dom 𝑧)
75, 6eleqtrrid 2835 . . . 4 (𝜑 dom 𝑧 ∈ dom 𝑧)
8 aomclem1.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
9 fveq2 6858 . . . . . 6 (𝑎 = dom 𝑧 → (𝑧𝑎) = (𝑧 dom 𝑧))
10 fveq2 6858 . . . . . 6 (𝑎 = dom 𝑧 → (𝑅1𝑎) = (𝑅1 dom 𝑧))
119, 10weeq12d 5627 . . . . 5 (𝑎 = dom 𝑧 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)))
1211rspcva 3586 . . . 4 (( dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎)) → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
137, 8, 12syl2anc 584 . . 3 (𝜑 → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
14 aomclem1.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
1514wepwso 43032 . . 3 (((𝑅1 dom 𝑧) ∈ V ∧ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1 dom 𝑧))
161, 13, 15sylancr 587 . 2 (𝜑𝐵 Or 𝒫 (𝑅1 dom 𝑧))
176fveq2d 6862 . . . 4 (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc dom 𝑧))
18 aomclem1.on . . . . 5 (𝜑 → dom 𝑧 ∈ On)
19 onuni 7764 . . . . 5 (dom 𝑧 ∈ On → dom 𝑧 ∈ On)
20 r1suc 9723 . . . . 5 ( dom 𝑧 ∈ On → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2118, 19, 203syl 18 . . . 4 (𝜑 → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2217, 21eqtrd 2764 . . 3 (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
23 soeq2 5568 . . 3 ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2422, 23syl 17 . 2 (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2516, 24mpbird 257 1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  {copab 5169   Or wor 5545   We wwe 5590  dom cdm 5638  Oncon0 6332  suc csuc 6334  cfv 6511  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-map 8801  df-r1 9717
This theorem is referenced by:  aomclem2  43044
  Copyright terms: Public domain W3C validator