Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem1 | Structured version Visualization version GIF version |
Description: Lemma for dfac11 41138. This is the beginning of the proof that
multiple
choice is equivalent to choice. Our goal is to construct, by
transfinite recursion, a well-ordering of (𝑅1‘𝐴). In what
follows, 𝐴 is the index of the rank we wish to
well-order, 𝑧 is
the collection of well-orderings constructed so far, dom 𝑧 is
the
set of ordinal indices of constructed ranks i.e. the next rank to
construct, and 𝑦 is a postulated multiple-choice
function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
aomclem1.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
aomclem1.on | ⊢ (𝜑 → dom 𝑧 ∈ On) |
aomclem1.su | ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
aomclem1.we | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
Ref | Expression |
---|---|
aomclem1 | ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6832 | . . 3 ⊢ (𝑅1‘∪ dom 𝑧) ∈ V | |
2 | vex 3445 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 2 | dmex 7818 | . . . . . . 7 ⊢ dom 𝑧 ∈ V |
4 | 3 | uniex 7648 | . . . . . 6 ⊢ ∪ dom 𝑧 ∈ V |
5 | 4 | sucid 6377 | . . . . 5 ⊢ ∪ dom 𝑧 ∈ suc ∪ dom 𝑧 |
6 | aomclem1.su | . . . . 5 ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) | |
7 | 5, 6 | eleqtrrid 2844 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑧 ∈ dom 𝑧) |
8 | aomclem1.we | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | |
9 | fveq2 6819 | . . . . . 6 ⊢ (𝑎 = ∪ dom 𝑧 → (𝑧‘𝑎) = (𝑧‘∪ dom 𝑧)) | |
10 | fveq2 6819 | . . . . . 6 ⊢ (𝑎 = ∪ dom 𝑧 → (𝑅1‘𝑎) = (𝑅1‘∪ dom 𝑧)) | |
11 | 9, 10 | weeq12d 41116 | . . . . 5 ⊢ (𝑎 = ∪ dom 𝑧 → ((𝑧‘𝑎) We (𝑅1‘𝑎) ↔ (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧))) |
12 | 11 | rspcva 3568 | . . . 4 ⊢ ((∪ dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) → (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) |
13 | 7, 8, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) |
14 | aomclem1.b | . . . 4 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
15 | 14 | wepwso 41119 | . . 3 ⊢ (((𝑅1‘∪ dom 𝑧) ∈ V ∧ (𝑧‘∪ dom 𝑧) We (𝑅1‘∪ dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧)) |
16 | 1, 13, 15 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧)) |
17 | 6 | fveq2d 6823 | . . . 4 ⊢ (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc ∪ dom 𝑧)) |
18 | aomclem1.on | . . . . 5 ⊢ (𝜑 → dom 𝑧 ∈ On) | |
19 | onuni 7693 | . . . . 5 ⊢ (dom 𝑧 ∈ On → ∪ dom 𝑧 ∈ On) | |
20 | r1suc 9619 | . . . . 5 ⊢ (∪ dom 𝑧 ∈ On → (𝑅1‘suc ∪ dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) | |
21 | 18, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅1‘suc ∪ dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) |
22 | 17, 21 | eqtrd 2776 | . . 3 ⊢ (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧)) |
23 | soeq2 5548 | . . 3 ⊢ ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1‘∪ dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧))) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1‘∪ dom 𝑧))) |
25 | 16, 24 | mpbird 256 | 1 ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 Vcvv 3441 𝒫 cpw 4546 ∪ cuni 4851 class class class wbr 5089 {copab 5151 Or wor 5525 We wwe 5568 dom cdm 5614 Oncon0 6296 suc csuc 6298 ‘cfv 6473 𝑅1cr1 9611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-map 8680 df-r1 9613 |
This theorem is referenced by: aomclem2 41131 |
Copyright terms: Public domain | W3C validator |