Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem1 Structured version   Visualization version   GIF version

Theorem aomclem1 42098
Description: Lemma for dfac11 42106. This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of (𝑅1𝐴). In what follows, 𝐴 is the index of the rank we wish to well-order, 𝑧 is the collection of well-orderings constructed so far, dom 𝑧 is the set of ordinal indices of constructed ranks i.e. the next rank to construct, and 𝑦 is a postulated multiple-choice function.

Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypotheses
Ref Expression
aomclem1.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem1.on (𝜑 → dom 𝑧 ∈ On)
aomclem1.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem1.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Distinct variable group:   𝑧,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem1
StepHypRef Expression
1 fvex 6903 . . 3 (𝑅1 dom 𝑧) ∈ V
2 vex 3476 . . . . . . . 8 𝑧 ∈ V
32dmex 7904 . . . . . . 7 dom 𝑧 ∈ V
43uniex 7733 . . . . . 6 dom 𝑧 ∈ V
54sucid 6445 . . . . 5 dom 𝑧 ∈ suc dom 𝑧
6 aomclem1.su . . . . 5 (𝜑 → dom 𝑧 = suc dom 𝑧)
75, 6eleqtrrid 2838 . . . 4 (𝜑 dom 𝑧 ∈ dom 𝑧)
8 aomclem1.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
9 fveq2 6890 . . . . . 6 (𝑎 = dom 𝑧 → (𝑧𝑎) = (𝑧 dom 𝑧))
10 fveq2 6890 . . . . . 6 (𝑎 = dom 𝑧 → (𝑅1𝑎) = (𝑅1 dom 𝑧))
119, 10weeq12d 42084 . . . . 5 (𝑎 = dom 𝑧 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)))
1211rspcva 3609 . . . 4 (( dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎)) → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
137, 8, 12syl2anc 582 . . 3 (𝜑 → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
14 aomclem1.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
1514wepwso 42087 . . 3 (((𝑅1 dom 𝑧) ∈ V ∧ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1 dom 𝑧))
161, 13, 15sylancr 585 . 2 (𝜑𝐵 Or 𝒫 (𝑅1 dom 𝑧))
176fveq2d 6894 . . . 4 (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc dom 𝑧))
18 aomclem1.on . . . . 5 (𝜑 → dom 𝑧 ∈ On)
19 onuni 7778 . . . . 5 (dom 𝑧 ∈ On → dom 𝑧 ∈ On)
20 r1suc 9767 . . . . 5 ( dom 𝑧 ∈ On → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2118, 19, 203syl 18 . . . 4 (𝜑 → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2217, 21eqtrd 2770 . . 3 (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
23 soeq2 5609 . . 3 ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2422, 23syl 17 . 2 (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2516, 24mpbird 256 1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068  Vcvv 3472  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  {copab 5209   Or wor 5586   We wwe 5629  dom cdm 5675  Oncon0 6363  suc csuc 6365  cfv 6542  𝑅1cr1 9759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-map 8824  df-r1 9761
This theorem is referenced by:  aomclem2  42099
  Copyright terms: Public domain W3C validator