Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem1 Structured version   Visualization version   GIF version

Theorem aomclem1 41781
Description: Lemma for dfac11 41789. This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of (𝑅1𝐴). In what follows, 𝐴 is the index of the rank we wish to well-order, 𝑧 is the collection of well-orderings constructed so far, dom 𝑧 is the set of ordinal indices of constructed ranks i.e. the next rank to construct, and 𝑦 is a postulated multiple-choice function.

Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypotheses
Ref Expression
aomclem1.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem1.on (𝜑 → dom 𝑧 ∈ On)
aomclem1.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem1.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Distinct variable group:   𝑧,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem1
StepHypRef Expression
1 fvex 6901 . . 3 (𝑅1 dom 𝑧) ∈ V
2 vex 3478 . . . . . . . 8 𝑧 ∈ V
32dmex 7898 . . . . . . 7 dom 𝑧 ∈ V
43uniex 7727 . . . . . 6 dom 𝑧 ∈ V
54sucid 6443 . . . . 5 dom 𝑧 ∈ suc dom 𝑧
6 aomclem1.su . . . . 5 (𝜑 → dom 𝑧 = suc dom 𝑧)
75, 6eleqtrrid 2840 . . . 4 (𝜑 dom 𝑧 ∈ dom 𝑧)
8 aomclem1.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
9 fveq2 6888 . . . . . 6 (𝑎 = dom 𝑧 → (𝑧𝑎) = (𝑧 dom 𝑧))
10 fveq2 6888 . . . . . 6 (𝑎 = dom 𝑧 → (𝑅1𝑎) = (𝑅1 dom 𝑧))
119, 10weeq12d 41767 . . . . 5 (𝑎 = dom 𝑧 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)))
1211rspcva 3610 . . . 4 (( dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎)) → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
137, 8, 12syl2anc 584 . . 3 (𝜑 → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
14 aomclem1.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
1514wepwso 41770 . . 3 (((𝑅1 dom 𝑧) ∈ V ∧ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1 dom 𝑧))
161, 13, 15sylancr 587 . 2 (𝜑𝐵 Or 𝒫 (𝑅1 dom 𝑧))
176fveq2d 6892 . . . 4 (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc dom 𝑧))
18 aomclem1.on . . . . 5 (𝜑 → dom 𝑧 ∈ On)
19 onuni 7772 . . . . 5 (dom 𝑧 ∈ On → dom 𝑧 ∈ On)
20 r1suc 9761 . . . . 5 ( dom 𝑧 ∈ On → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2118, 19, 203syl 18 . . . 4 (𝜑 → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2217, 21eqtrd 2772 . . 3 (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
23 soeq2 5609 . . 3 ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2422, 23syl 17 . 2 (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2516, 24mpbird 256 1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  {copab 5209   Or wor 5586   We wwe 5629  dom cdm 5675  Oncon0 6361  suc csuc 6363  cfv 6540  𝑅1cr1 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-map 8818  df-r1 9755
This theorem is referenced by:  aomclem2  41782
  Copyright terms: Public domain W3C validator