Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 39678
Description: Lemma for dfac11 39682. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem5.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem5.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem5.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem5.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem5.on (𝜑 → dom 𝑧 ∈ On)
aomclem5.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem5.a (𝜑𝐴 ∈ On)
aomclem5.za (𝜑 → dom 𝑧𝐴)
aomclem5.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem5 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
2 aomclem5.on . . . . . . 7 (𝜑 → dom 𝑧 ∈ On)
32adantr 483 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
4 simpr 487 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 = dom 𝑧)
5 aomclem5.we . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
65adantr 483 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
71, 3, 4, 6aomclem4 39677 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧))
8 iftrue 4473 . . . . . . 7 (dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 484 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2822 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
119, 10weeq12d 39660 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧)))
127, 11mpbird 259 . . . 4 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
13 aomclem5.b . . . . . 6 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
14 aomclem5.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
15 aomclem5.d . . . . . 6 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
16 aomclem5.e . . . . . 6 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
172adantr 483 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
18 eloni 6201 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
19 orduniorsuc 7545 . . . . . . . 8 (Ord dom 𝑧 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (𝜑 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
2120orcanai 999 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 = suc dom 𝑧)
225adantr 483 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
23 aomclem5.a . . . . . . 7 (𝜑𝐴 ∈ On)
2423adantr 483 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (𝜑 → dom 𝑧𝐴)
2625adantr 483 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧𝐴)
27 aomclem5.y . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2827adantr 483 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 39676 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐸 We (𝑅1‘dom 𝑧))
30 iffalse 4476 . . . . . . 7 (¬ dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 484 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2822 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
3331, 32weeq12d 39660 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧)))
3429, 33mpbird 259 . . . 4 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
3512, 34pm2.61dan 811 . . 3 (𝜑 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
36 weinxp 5636 . . 3 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
3735, 36sylib 220 . 2 (𝜑 → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
39 weeq1 5543 . . 3 (𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
4137, 40sylibr 236 1 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cin 3935  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539  {csn 4567   cuni 4838   cint 4876   class class class wbr 5066  {copab 5128  cmpt 5146   E cep 5464   We wwe 5513   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  Ord word 6190  Oncon0 6191  suc csuc 6193  cfv 6355  recscrecs 8007  Fincfn 8509  supcsup 8904  𝑅1cr1 9191  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-fin 8513  df-sup 8906  df-r1 9193  df-rank 9194
This theorem is referenced by:  aomclem6  39679
  Copyright terms: Public domain W3C validator