Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 40872
Description: Lemma for dfac11 40876. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem5.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem5.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem5.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem5.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem5.on (𝜑 → dom 𝑧 ∈ On)
aomclem5.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem5.a (𝜑𝐴 ∈ On)
aomclem5.za (𝜑 → dom 𝑧𝐴)
aomclem5.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem5 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
2 aomclem5.on . . . . . . 7 (𝜑 → dom 𝑧 ∈ On)
32adantr 481 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
4 simpr 485 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 = dom 𝑧)
5 aomclem5.we . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
65adantr 481 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
71, 3, 4, 6aomclem4 40871 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧))
8 iftrue 4471 . . . . . . 7 (dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 482 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2741 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
119, 10weeq12d 40854 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧)))
127, 11mpbird 256 . . . 4 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
13 aomclem5.b . . . . . 6 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
14 aomclem5.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
15 aomclem5.d . . . . . 6 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
16 aomclem5.e . . . . . 6 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
172adantr 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
18 eloni 6274 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
19 orduniorsuc 7666 . . . . . . . 8 (Ord dom 𝑧 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (𝜑 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
2120orcanai 1000 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 = suc dom 𝑧)
225adantr 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
23 aomclem5.a . . . . . . 7 (𝜑𝐴 ∈ On)
2423adantr 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (𝜑 → dom 𝑧𝐴)
2625adantr 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧𝐴)
27 aomclem5.y . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2827adantr 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 40870 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐸 We (𝑅1‘dom 𝑧))
30 iffalse 4474 . . . . . . 7 (¬ dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 482 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2741 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
3331, 32weeq12d 40854 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧)))
3429, 33mpbird 256 . . . 4 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
3512, 34pm2.61dan 810 . . 3 (𝜑 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
36 weinxp 5671 . . 3 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
3735, 36sylib 217 . 2 (𝜑 → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
39 weeq1 5577 . . 3 (𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
4137, 40sylibr 233 1 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  cdif 3889  cin 3891  wss 3892  c0 4262  ifcif 4465  𝒫 cpw 4539  {csn 4567   cuni 4845   cint 4885   class class class wbr 5079  {copab 5141  cmpt 5162   E cep 5494   We wwe 5543   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Ord word 6263  Oncon0 6264  suc csuc 6266  cfv 6431  recscrecs 8186  Fincfn 8708  supcsup 9169  𝑅1cr1 9513  rankcrnk 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-map 8592  df-en 8709  df-fin 8712  df-sup 9171  df-r1 9515  df-rank 9516
This theorem is referenced by:  aomclem6  40873
  Copyright terms: Public domain W3C validator