Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 40799
Description: Lemma for dfac11 40803. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem5.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem5.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem5.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem5.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem5.on (𝜑 → dom 𝑧 ∈ On)
aomclem5.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem5.a (𝜑𝐴 ∈ On)
aomclem5.za (𝜑 → dom 𝑧𝐴)
aomclem5.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem5 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
2 aomclem5.on . . . . . . 7 (𝜑 → dom 𝑧 ∈ On)
32adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
4 simpr 484 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 = dom 𝑧)
5 aomclem5.we . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
65adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
71, 3, 4, 6aomclem4 40798 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧))
8 iftrue 4462 . . . . . . 7 (dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 481 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2739 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
119, 10weeq12d 40781 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧)))
127, 11mpbird 256 . . . 4 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
13 aomclem5.b . . . . . 6 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
14 aomclem5.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
15 aomclem5.d . . . . . 6 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
16 aomclem5.e . . . . . 6 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
172adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
18 eloni 6261 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
19 orduniorsuc 7652 . . . . . . . 8 (Ord dom 𝑧 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (𝜑 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
2120orcanai 999 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 = suc dom 𝑧)
225adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
23 aomclem5.a . . . . . . 7 (𝜑𝐴 ∈ On)
2423adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (𝜑 → dom 𝑧𝐴)
2625adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧𝐴)
27 aomclem5.y . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2827adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 40797 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐸 We (𝑅1‘dom 𝑧))
30 iffalse 4465 . . . . . . 7 (¬ dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2739 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
3331, 32weeq12d 40781 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧)))
3429, 33mpbird 256 . . . 4 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
3512, 34pm2.61dan 809 . . 3 (𝜑 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
36 weinxp 5662 . . 3 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
3735, 36sylib 217 . 2 (𝜑 → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
39 weeq1 5568 . . 3 (𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
4137, 40sylibr 233 1 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876   class class class wbr 5070  {copab 5132  cmpt 5153   E cep 5485   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Ord word 6250  Oncon0 6251  suc csuc 6253  cfv 6418  recscrecs 8172  Fincfn 8691  supcsup 9129  𝑅1cr1 9451  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-map 8575  df-en 8692  df-fin 8695  df-sup 9131  df-r1 9453  df-rank 9454
This theorem is referenced by:  aomclem6  40800
  Copyright terms: Public domain W3C validator