Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 42378
Description: Lemma for dfac11 42382. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐡 = {βŸ¨π‘Ž, π‘βŸ© ∣ βˆƒπ‘ ∈ (𝑅1β€˜βˆͺ dom 𝑧)((𝑐 ∈ 𝑏 ∧ Β¬ 𝑐 ∈ π‘Ž) ∧ βˆ€π‘‘ ∈ (𝑅1β€˜βˆͺ dom 𝑧)(𝑑(π‘§β€˜βˆͺ dom 𝑧)𝑐 β†’ (𝑑 ∈ π‘Ž ↔ 𝑑 ∈ 𝑏)))}
aomclem5.c 𝐢 = (π‘Ž ∈ V ↦ sup((π‘¦β€˜π‘Ž), (𝑅1β€˜dom 𝑧), 𝐡))
aomclem5.d 𝐷 = recs((π‘Ž ∈ V ↦ (πΆβ€˜((𝑅1β€˜dom 𝑧) βˆ– ran π‘Ž))))
aomclem5.e 𝐸 = {βŸ¨π‘Ž, π‘βŸ© ∣ ∩ (◑𝐷 β€œ {π‘Ž}) ∈ ∩ (◑𝐷 β€œ {𝑏})}
aomclem5.f 𝐹 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((rankβ€˜π‘Ž) E (rankβ€˜π‘) ∨ ((rankβ€˜π‘Ž) = (rankβ€˜π‘) ∧ π‘Ž(π‘§β€˜suc (rankβ€˜π‘Ž))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧)))
aomclem5.on (πœ‘ β†’ dom 𝑧 ∈ On)
aomclem5.we (πœ‘ β†’ βˆ€π‘Ž ∈ dom 𝑧(π‘§β€˜π‘Ž) We (𝑅1β€˜π‘Ž))
aomclem5.a (πœ‘ β†’ 𝐴 ∈ On)
aomclem5.za (πœ‘ β†’ dom 𝑧 βŠ† 𝐴)
aomclem5.y (πœ‘ β†’ βˆ€π‘Ž ∈ 𝒫 (𝑅1β€˜π΄)(π‘Ž β‰  βˆ… β†’ (π‘¦β€˜π‘Ž) ∈ ((𝒫 π‘Ž ∩ Fin) βˆ– {βˆ…})))
Assertion
Ref Expression
aomclem5 (πœ‘ β†’ 𝐺 We (𝑅1β€˜dom 𝑧))
Distinct variable groups:   𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑   πœ‘,π‘Ž,𝑏   𝐢,π‘Ž,𝑏,𝑐,𝑑   𝐷,π‘Ž,𝑏,𝑐,𝑑
Allowed substitution hints:   πœ‘(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑)   𝐡(𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑)   𝐢(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,π‘Ž,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((rankβ€˜π‘Ž) E (rankβ€˜π‘) ∨ ((rankβ€˜π‘Ž) = (rankβ€˜π‘) ∧ π‘Ž(π‘§β€˜suc (rankβ€˜π‘Ž))𝑏))}
2 aomclem5.on . . . . . . 7 (πœ‘ β†’ dom 𝑧 ∈ On)
32adantr 480 . . . . . 6 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ dom 𝑧 ∈ On)
4 simpr 484 . . . . . 6 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ dom 𝑧 = βˆͺ dom 𝑧)
5 aomclem5.we . . . . . . 7 (πœ‘ β†’ βˆ€π‘Ž ∈ dom 𝑧(π‘§β€˜π‘Ž) We (𝑅1β€˜π‘Ž))
65adantr 480 . . . . . 6 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ βˆ€π‘Ž ∈ dom 𝑧(π‘§β€˜π‘Ž) We (𝑅1β€˜π‘Ž))
71, 3, 4, 6aomclem4 42377 . . . . 5 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ 𝐹 We (𝑅1β€˜dom 𝑧))
8 iftrue 4529 . . . . . . 7 (dom 𝑧 = βˆͺ dom 𝑧 β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 481 . . . . . 6 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2727 . . . . . 6 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ (𝑅1β€˜dom 𝑧) = (𝑅1β€˜dom 𝑧))
119, 10weeq12d 42360 . . . . 5 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧) ↔ 𝐹 We (𝑅1β€˜dom 𝑧)))
127, 11mpbird 257 . . . 4 ((πœ‘ ∧ dom 𝑧 = βˆͺ dom 𝑧) β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧))
13 aomclem5.b . . . . . 6 𝐡 = {βŸ¨π‘Ž, π‘βŸ© ∣ βˆƒπ‘ ∈ (𝑅1β€˜βˆͺ dom 𝑧)((𝑐 ∈ 𝑏 ∧ Β¬ 𝑐 ∈ π‘Ž) ∧ βˆ€π‘‘ ∈ (𝑅1β€˜βˆͺ dom 𝑧)(𝑑(π‘§β€˜βˆͺ dom 𝑧)𝑐 β†’ (𝑑 ∈ π‘Ž ↔ 𝑑 ∈ 𝑏)))}
14 aomclem5.c . . . . . 6 𝐢 = (π‘Ž ∈ V ↦ sup((π‘¦β€˜π‘Ž), (𝑅1β€˜dom 𝑧), 𝐡))
15 aomclem5.d . . . . . 6 𝐷 = recs((π‘Ž ∈ V ↦ (πΆβ€˜((𝑅1β€˜dom 𝑧) βˆ– ran π‘Ž))))
16 aomclem5.e . . . . . 6 𝐸 = {βŸ¨π‘Ž, π‘βŸ© ∣ ∩ (◑𝐷 β€œ {π‘Ž}) ∈ ∩ (◑𝐷 β€œ {𝑏})}
172adantr 480 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ dom 𝑧 ∈ On)
18 eloni 6368 . . . . . . . 8 (dom 𝑧 ∈ On β†’ Ord dom 𝑧)
19 orduniorsuc 7815 . . . . . . . 8 (Ord dom 𝑧 β†’ (dom 𝑧 = βˆͺ dom 𝑧 ∨ dom 𝑧 = suc βˆͺ dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (πœ‘ β†’ (dom 𝑧 = βˆͺ dom 𝑧 ∨ dom 𝑧 = suc βˆͺ dom 𝑧))
2120orcanai 999 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ dom 𝑧 = suc βˆͺ dom 𝑧)
225adantr 480 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ βˆ€π‘Ž ∈ dom 𝑧(π‘§β€˜π‘Ž) We (𝑅1β€˜π‘Ž))
23 aomclem5.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ On)
2423adantr 480 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (πœ‘ β†’ dom 𝑧 βŠ† 𝐴)
2625adantr 480 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ dom 𝑧 βŠ† 𝐴)
27 aomclem5.y . . . . . . 7 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝒫 (𝑅1β€˜π΄)(π‘Ž β‰  βˆ… β†’ (π‘¦β€˜π‘Ž) ∈ ((𝒫 π‘Ž ∩ Fin) βˆ– {βˆ…})))
2827adantr 480 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ βˆ€π‘Ž ∈ 𝒫 (𝑅1β€˜π΄)(π‘Ž β‰  βˆ… β†’ (π‘¦β€˜π‘Ž) ∈ ((𝒫 π‘Ž ∩ Fin) βˆ– {βˆ…})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 42376 . . . . 5 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ 𝐸 We (𝑅1β€˜dom 𝑧))
30 iffalse 4532 . . . . . . 7 (Β¬ dom 𝑧 = βˆͺ dom 𝑧 β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 481 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2727 . . . . . 6 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ (𝑅1β€˜dom 𝑧) = (𝑅1β€˜dom 𝑧))
3331, 32weeq12d 42360 . . . . 5 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧) ↔ 𝐸 We (𝑅1β€˜dom 𝑧)))
3429, 33mpbird 257 . . . 4 ((πœ‘ ∧ Β¬ dom 𝑧 = βˆͺ dom 𝑧) β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧))
3512, 34pm2.61dan 810 . . 3 (πœ‘ β†’ if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧))
36 weinxp 5753 . . 3 (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) We (𝑅1β€˜dom 𝑧) ↔ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧))) We (𝑅1β€˜dom 𝑧))
3735, 36sylib 217 . 2 (πœ‘ β†’ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧))) We (𝑅1β€˜dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧)))
39 weeq1 5657 . . 3 (𝐺 = (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧))) β†’ (𝐺 We (𝑅1β€˜dom 𝑧) ↔ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧))) We (𝑅1β€˜dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1β€˜dom 𝑧) ↔ (if(dom 𝑧 = βˆͺ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1β€˜dom 𝑧) Γ— (𝑅1β€˜dom 𝑧))) We (𝑅1β€˜dom 𝑧))
4137, 40sylibr 233 1 (πœ‘ β†’ 𝐺 We (𝑅1β€˜dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  Vcvv 3468   βˆ– cdif 3940   ∩ cin 3942   βŠ† wss 3943  βˆ…c0 4317  ifcif 4523  π’« cpw 4597  {csn 4623  βˆͺ cuni 4902  βˆ© cint 4943   class class class wbr 5141  {copab 5203   ↦ cmpt 5224   E cep 5572   We wwe 5623   Γ— cxp 5667  β—‘ccnv 5668  dom cdm 5669  ran crn 5670   β€œ cima 5672  Ord word 6357  Oncon0 6358  suc csuc 6360  β€˜cfv 6537  recscrecs 8371  Fincfn 8941  supcsup 9437  π‘…1cr1 9759  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-map 8824  df-en 8942  df-fin 8945  df-sup 9439  df-r1 9761  df-rank 9762
This theorem is referenced by:  aomclem6  42379
  Copyright terms: Public domain W3C validator