Proof of Theorem aomclem5
Step | Hyp | Ref
| Expression |
1 | | aomclem5.f |
. . . . . 6
⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
2 | | aomclem5.on |
. . . . . . 7
⊢ (𝜑 → dom 𝑧 ∈ On) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → dom 𝑧 ∈ On) |
4 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → dom 𝑧 = ∪ dom 𝑧) |
5 | | aomclem5.we |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
7 | 1, 3, 4, 6 | aomclem4 40882 |
. . . . 5
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧)) |
8 | | iftrue 4465 |
. . . . . . 7
⊢ (dom
𝑧 = ∪ dom 𝑧 → if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) = 𝐹) |
9 | 8 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) = 𝐹) |
10 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) →
(𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧)) |
11 | 9, 10 | weeq12d 40865 |
. . . . 5
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → (if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧))) |
12 | 7, 11 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ dom 𝑧 = ∪ dom 𝑧) → if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧)) |
13 | | aomclem5.b |
. . . . . 6
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
14 | | aomclem5.c |
. . . . . 6
⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
15 | | aomclem5.d |
. . . . . 6
⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom
𝑧) ∖ ran 𝑎)))) |
16 | | aomclem5.e |
. . . . . 6
⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩
(◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
17 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → dom 𝑧 ∈ On) |
18 | | eloni 6276 |
. . . . . . . 8
⊢ (dom
𝑧 ∈ On → Ord dom
𝑧) |
19 | | orduniorsuc 7677 |
. . . . . . . 8
⊢ (Ord dom
𝑧 → (dom 𝑧 = ∪
dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧)) |
20 | 2, 18, 19 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (dom 𝑧 = ∪ dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧)) |
21 | 20 | orcanai 1000 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → dom 𝑧 = suc ∪ dom 𝑧) |
22 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
23 | | aomclem5.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ On) |
24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → 𝐴 ∈ On) |
25 | | aomclem5.za |
. . . . . . 7
⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → dom 𝑧 ⊆ 𝐴) |
27 | | aomclem5.y |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅}))) |
28 | 27 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → ∀𝑎 ∈ 𝒫
(𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅}))) |
29 | 13, 14, 15, 16, 17, 21, 22, 24, 26, 28 | aomclem3 40881 |
. . . . 5
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → 𝐸 We
(𝑅1‘dom 𝑧)) |
30 | | iffalse 4468 |
. . . . . . 7
⊢ (¬
dom 𝑧 = ∪ dom 𝑧 → if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) = 𝐸) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) = 𝐸) |
32 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) →
(𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧)) |
33 | 31, 32 | weeq12d 40865 |
. . . . 5
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → (if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧))) |
34 | 29, 33 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ ¬ dom 𝑧 = ∪
dom 𝑧) → if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧)) |
35 | 12, 34 | pm2.61dan 810 |
. . 3
⊢ (𝜑 → if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧)) |
36 | | weinxp 5671 |
. . 3
⊢ (if(dom
𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)) |
37 | 35, 36 | sylib 217 |
. 2
⊢ (𝜑 → (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)) |
38 | | aomclem5.g |
. . 3
⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) |
39 | | weeq1 5577 |
. . 3
⊢ (𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = ∪
dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))) |
40 | 38, 39 | ax-mp 5 |
. 2
⊢ (𝐺 We
(𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom
𝑧) ×
(𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)) |
41 | 37, 40 | sylibr 233 |
1
⊢ (𝜑 → 𝐺 We (𝑅1‘dom 𝑧)) |