Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 43020
Description: Lemma for dfac11 43024. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem5.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem5.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem5.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem5.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem5.on (𝜑 → dom 𝑧 ∈ On)
aomclem5.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem5.a (𝜑𝐴 ∈ On)
aomclem5.za (𝜑 → dom 𝑧𝐴)
aomclem5.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem5 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
2 aomclem5.on . . . . . . 7 (𝜑 → dom 𝑧 ∈ On)
32adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
4 simpr 484 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 = dom 𝑧)
5 aomclem5.we . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
65adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
71, 3, 4, 6aomclem4 43019 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧))
8 iftrue 4490 . . . . . . 7 (dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 481 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2730 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
119, 10weeq12d 5620 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧)))
127, 11mpbird 257 . . . 4 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
13 aomclem5.b . . . . . 6 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
14 aomclem5.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
15 aomclem5.d . . . . . 6 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
16 aomclem5.e . . . . . 6 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
172adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
18 eloni 6330 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
19 orduniorsuc 7785 . . . . . . . 8 (Ord dom 𝑧 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (𝜑 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
2120orcanai 1004 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 = suc dom 𝑧)
225adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
23 aomclem5.a . . . . . . 7 (𝜑𝐴 ∈ On)
2423adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (𝜑 → dom 𝑧𝐴)
2625adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧𝐴)
27 aomclem5.y . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2827adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 43018 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐸 We (𝑅1‘dom 𝑧))
30 iffalse 4493 . . . . . . 7 (¬ dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2730 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
3331, 32weeq12d 5620 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧)))
3429, 33mpbird 257 . . . 4 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
3512, 34pm2.61dan 812 . . 3 (𝜑 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
36 weinxp 5716 . . 3 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
3735, 36sylib 218 . 2 (𝜑 → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
39 weeq1 5618 . . 3 (𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
4137, 40sylibr 234 1 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559  {csn 4585   cuni 4867   cint 4906   class class class wbr 5102  {copab 5164  cmpt 5183   E cep 5530   We wwe 5583   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Ord word 6319  Oncon0 6320  suc csuc 6322  cfv 6499  recscrecs 8316  Fincfn 8895  supcsup 9367  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-map 8778  df-en 8896  df-fin 8899  df-sup 9369  df-r1 9693  df-rank 9694
This theorem is referenced by:  aomclem6  43021
  Copyright terms: Public domain W3C validator