Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Structured version   Visualization version   GIF version

Theorem fnwe2lem1 43055
Description: Lemma for fnwe2 43058. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
Assertion
Ref Expression
fnwe2lem1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎   𝑥,𝑆,𝑦,𝑎   𝑥,𝑅,𝑦,𝑎   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧,𝑎   𝑥,𝐹,𝑦,𝑧,𝑎   𝑇,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
21ralrimiva 3146 . . 3 (𝜑 → ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
3 fveq2 6914 . . . . . . 7 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
43csbeq1d 3915 . . . . . 6 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = (𝐹𝑥) / 𝑧𝑆)
5 fvex 6927 . . . . . . 7 (𝐹𝑥) ∈ V
6 fnwe2.su . . . . . . 7 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
75, 6csbie 3947 . . . . . 6 (𝐹𝑥) / 𝑧𝑆 = 𝑈
84, 7eqtrdi 2793 . . . . 5 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = 𝑈)
93eqeq2d 2748 . . . . . 6 (𝑎 = 𝑥 → ((𝐹𝑦) = (𝐹𝑎) ↔ (𝐹𝑦) = (𝐹𝑥)))
109rabbidv 3444 . . . . 5 (𝑎 = 𝑥 → {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} = {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
118, 10weeq12d 5682 . . . 4 (𝑎 = 𝑥 → ((𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)}))
1211cbvralvw 3237 . . 3 (∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
132, 12sylibr 234 . 2 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
1413r19.21bi 3251 1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1539  wcel 2108  wral 3061  {crab 3436  csb 3911   class class class wbr 5151  {copab 5213   We wwe 5644  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-nul 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-iota 6522  df-fv 6577
This theorem is referenced by:  fnwe2lem2  43056  fnwe2lem3  43057
  Copyright terms: Public domain W3C validator