| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fnwe2 43035. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
| fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
| fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| Ref | Expression |
|---|---|
| fnwe2lem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.s | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
| 2 | 1 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 3 | fveq2 6860 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
| 4 | 3 | csbeq1d 3868 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑥) / 𝑧⦌𝑆) |
| 5 | fvex 6873 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | fnwe2.su | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
| 7 | 5, 6 | csbie 3899 | . . . . . 6 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
| 8 | 4, 7 | eqtrdi 2781 | . . . . 5 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = 𝑈) |
| 9 | 3 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
| 10 | 9 | rabbidv 3416 | . . . . 5 ⊢ (𝑎 = 𝑥 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 11 | 8, 10 | weeq12d 5629 | . . . 4 ⊢ (𝑎 = 𝑥 → (⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)})) |
| 12 | 11 | cbvralvw 3216 | . . 3 ⊢ (∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 13 | 2, 12 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| 14 | 13 | r19.21bi 3230 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⦋csb 3864 class class class wbr 5109 {copab 5171 We wwe 5592 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: fnwe2lem2 43033 fnwe2lem3 43034 |
| Copyright terms: Public domain | W3C validator |