![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fnwe2 41795. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
fnwe2.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
Ref | Expression |
---|---|
fnwe2lem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe2.s | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
2 | 1 | ralrimiva 3147 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
3 | fveq2 6892 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
4 | 3 | csbeq1d 3898 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑥) / 𝑧⦌𝑆) |
5 | fvex 6905 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
6 | fnwe2.su | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
7 | 5, 6 | csbie 3930 | . . . . . 6 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
8 | 4, 7 | eqtrdi 2789 | . . . . 5 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = 𝑈) |
9 | 3 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
10 | 9 | rabbidv 3441 | . . . . 5 ⊢ (𝑎 = 𝑥 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
11 | 8, 10 | weeq12d 41782 | . . . 4 ⊢ (𝑎 = 𝑥 → (⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)})) |
12 | 11 | cbvralvw 3235 | . . 3 ⊢ (∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
13 | 2, 12 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
14 | 13 | r19.21bi 3249 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 ⦋csb 3894 class class class wbr 5149 {copab 5211 We wwe 5631 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-iota 6496 df-fv 6552 |
This theorem is referenced by: fnwe2lem2 41793 fnwe2lem3 41794 |
Copyright terms: Public domain | W3C validator |