| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fnwe2 43094. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
| fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
| fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| Ref | Expression |
|---|---|
| fnwe2lem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.s | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
| 2 | 1 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 3 | fveq2 6822 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
| 4 | 3 | csbeq1d 3849 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑥) / 𝑧⦌𝑆) |
| 5 | fvex 6835 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | fnwe2.su | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
| 7 | 5, 6 | csbie 3880 | . . . . . 6 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
| 8 | 4, 7 | eqtrdi 2782 | . . . . 5 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = 𝑈) |
| 9 | 3 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
| 10 | 9 | rabbidv 3402 | . . . . 5 ⊢ (𝑎 = 𝑥 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 11 | 8, 10 | weeq12d 5603 | . . . 4 ⊢ (𝑎 = 𝑥 → (⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)})) |
| 12 | 11 | cbvralvw 3210 | . . 3 ⊢ (∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 13 | 2, 12 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| 14 | 13 | r19.21bi 3224 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⦋csb 3845 class class class wbr 5089 {copab 5151 We wwe 5566 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: fnwe2lem2 43092 fnwe2lem3 43093 |
| Copyright terms: Public domain | W3C validator |