![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fnwe2 43010. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
Ref | Expression |
---|---|
fnwe2lem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe2.s | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
2 | 1 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
4 | 3 | csbeq1d 3925 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑥) / 𝑧⦌𝑆) |
5 | fvex 6933 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
6 | fnwe2.su | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
7 | 5, 6 | csbie 3957 | . . . . . 6 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
8 | 4, 7 | eqtrdi 2796 | . . . . 5 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = 𝑈) |
9 | 3 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
10 | 9 | rabbidv 3451 | . . . . 5 ⊢ (𝑎 = 𝑥 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
11 | 8, 10 | weeq12d 5689 | . . . 4 ⊢ (𝑎 = 𝑥 → (⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)})) |
12 | 11 | cbvralvw 3243 | . . 3 ⊢ (∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
13 | 2, 12 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
14 | 13 | r19.21bi 3257 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⦋csb 3921 class class class wbr 5166 {copab 5228 We wwe 5651 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fnwe2lem2 43008 fnwe2lem3 43009 |
Copyright terms: Public domain | W3C validator |