Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Structured version   Visualization version   GIF version

Theorem fnwe2lem1 43091
Description: Lemma for fnwe2 43094. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
Assertion
Ref Expression
fnwe2lem1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎   𝑥,𝑆,𝑦,𝑎   𝑥,𝑅,𝑦,𝑎   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧,𝑎   𝑥,𝐹,𝑦,𝑧,𝑎   𝑇,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
21ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
3 fveq2 6822 . . . . . . 7 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
43csbeq1d 3849 . . . . . 6 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = (𝐹𝑥) / 𝑧𝑆)
5 fvex 6835 . . . . . . 7 (𝐹𝑥) ∈ V
6 fnwe2.su . . . . . . 7 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
75, 6csbie 3880 . . . . . 6 (𝐹𝑥) / 𝑧𝑆 = 𝑈
84, 7eqtrdi 2782 . . . . 5 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = 𝑈)
93eqeq2d 2742 . . . . . 6 (𝑎 = 𝑥 → ((𝐹𝑦) = (𝐹𝑎) ↔ (𝐹𝑦) = (𝐹𝑥)))
109rabbidv 3402 . . . . 5 (𝑎 = 𝑥 → {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} = {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
118, 10weeq12d 5603 . . . 4 (𝑎 = 𝑥 → ((𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)}))
1211cbvralvw 3210 . . 3 (∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
132, 12sylibr 234 . 2 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
1413r19.21bi 3224 1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  {crab 3395  csb 3845   class class class wbr 5089  {copab 5151   We wwe 5566  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-iota 6437  df-fv 6489
This theorem is referenced by:  fnwe2lem2  43092  fnwe2lem3  43093
  Copyright terms: Public domain W3C validator