Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Structured version   Visualization version   GIF version

Theorem fnwe2lem1 40855
Description: Lemma for fnwe2 40858. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
Assertion
Ref Expression
fnwe2lem1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎   𝑥,𝑆,𝑦,𝑎   𝑥,𝑅,𝑦,𝑎   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧,𝑎   𝑥,𝐹,𝑦,𝑧,𝑎   𝑇,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
21ralrimiva 3109 . . 3 (𝜑 → ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
3 fveq2 6768 . . . . . . 7 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
43csbeq1d 3840 . . . . . 6 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = (𝐹𝑥) / 𝑧𝑆)
5 fvex 6781 . . . . . . 7 (𝐹𝑥) ∈ V
6 fnwe2.su . . . . . . 7 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
75, 6csbie 3872 . . . . . 6 (𝐹𝑥) / 𝑧𝑆 = 𝑈
84, 7eqtrdi 2795 . . . . 5 (𝑎 = 𝑥(𝐹𝑎) / 𝑧𝑆 = 𝑈)
93eqeq2d 2750 . . . . . 6 (𝑎 = 𝑥 → ((𝐹𝑦) = (𝐹𝑎) ↔ (𝐹𝑦) = (𝐹𝑥)))
109rabbidv 3412 . . . . 5 (𝑎 = 𝑥 → {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} = {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
118, 10weeq12d 40845 . . . 4 (𝑎 = 𝑥 → ((𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)}))
1211cbvralvw 3380 . . 3 (∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ↔ ∀𝑥𝐴 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
132, 12sylibr 233 . 2 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
1413r19.21bi 3134 1 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1541  wcel 2109  wral 3065  {crab 3069  csb 3836   class class class wbr 5078  {copab 5140   We wwe 5542  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-iota 6388  df-fv 6438
This theorem is referenced by:  fnwe2lem2  40856  fnwe2lem3  40857
  Copyright terms: Public domain W3C validator