Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fnwe2 40858. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
Ref | Expression |
---|---|
fnwe2lem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe2.s | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
2 | 1 | ralrimiva 3109 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
3 | fveq2 6768 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
4 | 3 | csbeq1d 3840 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑥) / 𝑧⦌𝑆) |
5 | fvex 6781 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
6 | fnwe2.su | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
7 | 5, 6 | csbie 3872 | . . . . . 6 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
8 | 4, 7 | eqtrdi 2795 | . . . . 5 ⊢ (𝑎 = 𝑥 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = 𝑈) |
9 | 3 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
10 | 9 | rabbidv 3412 | . . . . 5 ⊢ (𝑎 = 𝑥 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
11 | 8, 10 | weeq12d 40845 | . . . 4 ⊢ (𝑎 = 𝑥 → (⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)})) |
12 | 11 | cbvralvw 3380 | . . 3 ⊢ (∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ↔ ∀𝑥 ∈ 𝐴 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
13 | 2, 12 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
14 | 13 | r19.21bi 3134 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 ⦋csb 3836 class class class wbr 5078 {copab 5140 We wwe 5542 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-iota 6388 df-fv 6438 |
This theorem is referenced by: fnwe2lem2 40856 fnwe2lem3 40857 |
Copyright terms: Public domain | W3C validator |