Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuc2 Structured version   Visualization version   GIF version

Theorem limsuc2 40438
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Assertion
Ref Expression
limsuc2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordunisuc2 7578 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
21biimpa 480 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 6237 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2817 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspccva 3525 . . . 4 ((∀𝑥𝐴 suc 𝑥𝐴𝐵𝐴) → suc 𝐵𝐴)
62, 5sylan 583 . . 3 (((Ord 𝐴𝐴 = 𝐴) ∧ 𝐵𝐴) → suc 𝐵𝐴)
76ex 416 . 2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
8 ordtr 6186 . . . 4 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6256 . . . . 5 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 416 . . . 4 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
118, 10syl 17 . . 3 (Ord 𝐴 → (suc 𝐵𝐴𝐵𝐴))
1211adantr 484 . 2 ((Ord 𝐴𝐴 = 𝐴) → (suc 𝐵𝐴𝐵𝐴))
137, 12impbid 215 1 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053   cuni 4796  Tr wtr 5136  Ord word 6171  suc csuc 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-ord 6175  df-on 6176  df-suc 6178
This theorem is referenced by:  aomclem4  40454
  Copyright terms: Public domain W3C validator