Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuc2 Structured version   Visualization version   GIF version

Theorem limsuc2 39661
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Assertion
Ref Expression
limsuc2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordunisuc2 7559 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
21biimpa 479 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 6256 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2897 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspccva 3622 . . . 4 ((∀𝑥𝐴 suc 𝑥𝐴𝐵𝐴) → suc 𝐵𝐴)
62, 5sylan 582 . . 3 (((Ord 𝐴𝐴 = 𝐴) ∧ 𝐵𝐴) → suc 𝐵𝐴)
76ex 415 . 2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
8 ordtr 6205 . . . 4 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6275 . . . . 5 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 415 . . . 4 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
118, 10syl 17 . . 3 (Ord 𝐴 → (suc 𝐵𝐴𝐵𝐴))
1211adantr 483 . 2 ((Ord 𝐴𝐴 = 𝐴) → (suc 𝐵𝐴𝐵𝐴))
137, 12impbid 214 1 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138   cuni 4838  Tr wtr 5172  Ord word 6190  suc csuc 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195  df-suc 6197
This theorem is referenced by:  aomclem4  39677
  Copyright terms: Public domain W3C validator