Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuc2 | Structured version Visualization version GIF version |
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
limsuc2 | ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordunisuc2 7666 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | 1 | biimpa 476 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
3 | suceq 6316 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
4 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
5 | 4 | rspccva 3551 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
6 | 2, 5 | sylan 579 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
7 | 6 | ex 412 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
8 | ordtr 6265 | . . . 4 ⊢ (Ord 𝐴 → Tr 𝐴) | |
9 | trsuc 6335 | . . . . 5 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
10 | 9 | ex 412 | . . . 4 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
12 | 11 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
13 | 7, 12 | impbid 211 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 Tr wtr 5187 Ord word 6250 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: aomclem4 40798 |
Copyright terms: Public domain | W3C validator |