![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuc2 | Structured version Visualization version GIF version |
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
limsuc2 | ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordunisuc2 7835 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | 1 | biimpa 477 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
3 | suceq 6430 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
4 | 3 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
5 | 4 | rspccva 3611 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
6 | 2, 5 | sylan 580 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
7 | 6 | ex 413 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
8 | ordtr 6378 | . . . 4 ⊢ (Ord 𝐴 → Tr 𝐴) | |
9 | trsuc 6451 | . . . . 5 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
10 | 9 | ex 413 | . . . 4 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
12 | 11 | adantr 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
13 | 7, 12 | impbid 211 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∪ cuni 4908 Tr wtr 5265 Ord word 6363 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: aomclem4 42101 |
Copyright terms: Public domain | W3C validator |