| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuc2 | Structured version Visualization version GIF version | ||
| Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| limsuc2 | ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordunisuc2 7769 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 2 | 1 | biimpa 476 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
| 3 | suceq 6369 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 4 | 3 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| 5 | 4 | rspccva 3571 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
| 6 | 2, 5 | sylan 580 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
| 7 | 6 | ex 412 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 8 | ordtr 6315 | . . . 4 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 9 | trsuc 6390 | . . . . 5 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 10 | 9 | ex 412 | . . . 4 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 13 | 7, 12 | impbid 212 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4854 Tr wtr 5193 Ord word 6300 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-suc 6307 |
| This theorem is referenced by: aomclem4 43090 |
| Copyright terms: Public domain | W3C validator |