Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnpnfmnf Structured version   Visualization version   GIF version

Theorem xrnpnfmnf 42690
Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xrnpnfmnf.1 (𝜑𝐴 ∈ ℝ*)
xrnpnfmnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnpnfmnf.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrnpnfmnf (𝜑𝐴 = -∞)

Proof of Theorem xrnpnfmnf
StepHypRef Expression
1 xrnpnfmnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnpnfmnf.3 . . . 4 (𝜑𝐴 ≠ +∞)
31, 2jca 515 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ +∞))
4 xrnepnf 12710 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
53, 4sylib 221 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
6 xrnpnfmnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 851 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  cr 10728  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-nel 3047  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-pw 4515  df-sn 4542  df-pr 4544  df-uni 4820  df-pnf 10869  df-mnf 10870  df-xr 10871
This theorem is referenced by:  xlimliminflimsup  43078
  Copyright terms: Public domain W3C validator