Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnpnfmnf Structured version   Visualization version   GIF version

Theorem xrnpnfmnf 42905
Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xrnpnfmnf.1 (𝜑𝐴 ∈ ℝ*)
xrnpnfmnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnpnfmnf.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrnpnfmnf (𝜑𝐴 = -∞)

Proof of Theorem xrnpnfmnf
StepHypRef Expression
1 xrnpnfmnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnpnfmnf.3 . . . 4 (𝜑𝐴 ≠ +∞)
31, 2jca 511 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ +∞))
4 xrnepnf 12783 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
53, 4sylib 217 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
6 xrnpnfmnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 847 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cr 10801  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-nel 3049  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-pnf 10942  df-mnf 10943  df-xr 10944
This theorem is referenced by:  xlimliminflimsup  43293
  Copyright terms: Public domain W3C validator