Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnpnfmnf Structured version   Visualization version   GIF version

Theorem xrnpnfmnf 45468
Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xrnpnfmnf.1 (𝜑𝐴 ∈ ℝ*)
xrnpnfmnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnpnfmnf.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrnpnfmnf (𝜑𝐴 = -∞)

Proof of Theorem xrnpnfmnf
StepHypRef Expression
1 xrnpnfmnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnpnfmnf.3 . . . 4 (𝜑𝐴 ≠ +∞)
31, 2jca 511 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ +∞))
4 xrnepnf 13139 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
53, 4sylib 218 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
6 xrnpnfmnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 851 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  cr 11133  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-rab 3421  df-v 3466  df-un 3936  df-in 3938  df-ss 3948  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889  df-pnf 11276  df-mnf 11277  df-xr 11278
This theorem is referenced by:  xlimliminflimsup  45858
  Copyright terms: Public domain W3C validator