![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnpnfmnf | Structured version Visualization version GIF version |
Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xrnpnfmnf.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnpnfmnf.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
xrnpnfmnf.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Ref | Expression |
---|---|
xrnpnfmnf | ⊢ (𝜑 → 𝐴 = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnpnfmnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrnpnfmnf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
3 | 1, 2 | jca 510 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞)) |
4 | xrnepnf 13146 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
6 | xrnpnfmnf.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
7 | pm2.53 849 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞)) | |
8 | 5, 6, 7 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 = -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ℝcr 11148 +∞cpnf 11286 -∞cmnf 11287 ℝ*cxr 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-nel 3037 df-rab 3420 df-v 3464 df-un 3951 df-in 3953 df-ss 3963 df-pw 4599 df-sn 4624 df-pr 4626 df-uni 4906 df-pnf 11291 df-mnf 11292 df-xr 11293 |
This theorem is referenced by: xlimliminflimsup 45519 |
Copyright terms: Public domain | W3C validator |