Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnpnfmnf | Structured version Visualization version GIF version |
Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xrnpnfmnf.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnpnfmnf.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
xrnpnfmnf.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Ref | Expression |
---|---|
xrnpnfmnf | ⊢ (𝜑 → 𝐴 = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnpnfmnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrnpnfmnf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
3 | 1, 2 | jca 515 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞)) |
4 | xrnepnf 12710 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
5 | 3, 4 | sylib 221 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
6 | xrnpnfmnf.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
7 | pm2.53 851 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞)) | |
8 | 5, 6, 7 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 = -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ℝcr 10728 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-nel 3047 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-pw 4515 df-sn 4542 df-pr 4544 df-uni 4820 df-pnf 10869 df-mnf 10870 df-xr 10871 |
This theorem is referenced by: xlimliminflimsup 43078 |
Copyright terms: Public domain | W3C validator |