| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnpnfmnf | Structured version Visualization version GIF version | ||
| Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xrnpnfmnf.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrnpnfmnf.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
| xrnpnfmnf.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Ref | Expression |
|---|---|
| xrnpnfmnf | ⊢ (𝜑 → 𝐴 = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnpnfmnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrnpnfmnf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞)) |
| 4 | xrnepnf 13017 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
| 6 | xrnpnfmnf.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
| 7 | pm2.53 851 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = -∞)) | |
| 8 | 5, 6, 7 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 df-mnf 11149 df-xr 11150 |
| This theorem is referenced by: xlimliminflimsup 45970 |
| Copyright terms: Public domain | W3C validator |