Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfged Structured version   Visualization version   GIF version

Theorem pnfged 42904
Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
pnfged.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
pnfged (𝜑𝐴 ≤ +∞)

Proof of Theorem pnfged
StepHypRef Expression
1 pnfged.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12795 . 2 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 1 (𝜑𝐴 ≤ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  +∞cpnf 10937  *cxr 10939  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  xlimpnfvlem2  43268  xlimliminflimsup  43293
  Copyright terms: Public domain W3C validator