Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfged | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
pnfged.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
pnfged | ⊢ (𝜑 → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfged.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | pnfge 12795 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: xlimpnfvlem2 43268 xlimliminflimsup 43293 |
Copyright terms: Public domain | W3C validator |