Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfged Structured version   Visualization version   GIF version

Theorem pnfged 45389
Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
pnfged.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
pnfged (𝜑𝐴 ≤ +∞)

Proof of Theorem pnfged
StepHypRef Expression
1 pnfged.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 pnfge 13193 . 2 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 1 (𝜑𝐴 ≤ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  +∞cpnf 11321  *cxr 11323  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  xlimpnfvlem2  45758  xlimliminflimsup  45783  pimgtpnf2f  46626
  Copyright terms: Public domain W3C validator