Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfged | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
pnfged.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
pnfged | ⊢ (𝜑 → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfged.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | pnfge 12866 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: xlimpnfvlem2 43378 xlimliminflimsup 43403 pimgtpnf2f 44242 |
Copyright terms: Public domain | W3C validator |