Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfged Structured version   Visualization version   GIF version

Theorem pnfged 43014
Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
pnfged.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
pnfged (𝜑𝐴 ≤ +∞)

Proof of Theorem pnfged
StepHypRef Expression
1 pnfged.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12866 . 2 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 1 (𝜑𝐴 ≤ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  +∞cpnf 11006  *cxr 11008  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  xlimpnfvlem2  43378  xlimliminflimsup  43403  pimgtpnf2f  44242
  Copyright terms: Public domain W3C validator