| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfged | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| pnfged.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| pnfged | ⊢ (𝜑 → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfged.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | pnfge 13155 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5125 +∞cpnf 11275 ℝ*cxr 11277 ≤ cle 11279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-cnv 5675 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 |
| This theorem is referenced by: lbslelsp 33589 xlimpnfvlem2 45797 xlimliminflimsup 45822 pimgtpnf2f 46665 |
| Copyright terms: Public domain | W3C validator |