NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addc32 GIF version

Theorem addc32 4416
Description: Swap arguments two and three in cardinal addition. (Contributed by SF, 22-Jan-2015.)
Assertion
Ref Expression
addc32 ((A +c B) +c C) = ((A +c C) +c B)

Proof of Theorem addc32
StepHypRef Expression
1 addccom 4406 . . 3 (B +c C) = (C +c B)
21addceq2i 4387 . 2 (A +c (B +c C)) = (A +c (C +c B))
3 addcass 4415 . 2 ((A +c B) +c C) = (A +c (B +c C))
4 addcass 4415 . 2 ((A +c C) +c B) = (A +c (C +c B))
52, 3, 43eqtr4i 2383 1 ((A +c B) +c C) = ((A +c C) +c B)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   +c cplc 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-pw 3724  df-sn 3741  df-pr 3742  df-opk 4058  df-1c 4136  df-pw1 4137  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-sik 4192  df-ssetk 4193  df-addc 4378
This theorem is referenced by:  addc4  4417  addc6  4418  preaddccan2  4455  ltfintri  4466  sucoddeven  4511  evenodddisj  4516  leaddc1  6214  addceq0  6219  addccan2nc  6265  nncdiv3  6277  nnc3n3p1  6278  nnc3n3p2  6279  nchoicelem2  6290  nchoicelem17  6305
  Copyright terms: Public domain W3C validator