NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addceq1i GIF version

Theorem addceq1i 4387
Description: Equality inference for cardinal addition. (Contributed by SF, 3-Feb-2015.)
Hypothesis
Ref Expression
addceqi.1 A = B
Assertion
Ref Expression
addceq1i (A +c C) = (B +c C)

Proof of Theorem addceq1i
StepHypRef Expression
1 addceqi.1 . 2 A = B
2 addceq1 4384 . 2 (A = B → (A +c C) = (B +c C))
31, 2ax-mp 5 1 (A +c C) = (B +c C)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379
This theorem is referenced by:  addc4  4418  addc6  4419  ltfinp1  4463  tfin1c  4500  sucoddeven  4512  evenodddisj  4517  taddc  6230  nncdiv3  6278  nnc3n3p1  6279  nnc3n3p2  6280  nchoicelem1  6290  nchoicelem2  6291
  Copyright terms: Public domain W3C validator