New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqrelriv | GIF version |
Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.) (Revised by Scott Fenton, 16-Apr-2021.) |
Ref | Expression |
---|---|
eqrelriv.1 | ⊢ (〈x, y〉 ∈ A ↔ 〈x, y〉 ∈ B) |
Ref | Expression |
---|---|
eqrelriv | ⊢ A = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrel 4846 | . 2 ⊢ (A = B ↔ ∀x∀y(〈x, y〉 ∈ A ↔ 〈x, y〉 ∈ B)) | |
2 | eqrelriv.1 | . . 3 ⊢ (〈x, y〉 ∈ A ↔ 〈x, y〉 ∈ B) | |
3 | 2 | ax-gen 1546 | . 2 ⊢ ∀y(〈x, y〉 ∈ A ↔ 〈x, y〉 ∈ B) |
4 | 1, 3 | mpgbir 1550 | 1 ⊢ A = B |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 〈cop 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-0c 4378 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 |
This theorem is referenced by: eqbrriv 4852 opabid2 4862 inopab 4863 dfres2 5003 cnvopab 5031 cnv0 5032 cnvdif 5035 cnvsn 5074 dfco2 5081 coiun 5091 co02 5093 dfcnv2 5101 cnviin 5119 txpcofun 5804 xpassen 6058 csucex 6260 |
Copyright terms: Public domain | W3C validator |