![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > uni1exg | GIF version |
Description: The unit union operator preserves sethood. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
uni1exg | ⊢ (A ∈ V → ⋃1A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni12 4291 | . 2 ⊢ ⋃1A = P6 (V ×k A) | |
2 | vvex 4109 | . . . 4 ⊢ V ∈ V | |
3 | xpkexg 4288 | . . . 4 ⊢ ((V ∈ V ∧ A ∈ V) → (V ×k A) ∈ V) | |
4 | 2, 3 | mpan 651 | . . 3 ⊢ (A ∈ V → (V ×k A) ∈ V) |
5 | p6exg 4290 | . . 3 ⊢ ((V ×k A) ∈ V → P6 (V ×k A) ∈ V) | |
6 | 4, 5 | syl 15 | . 2 ⊢ (A ∈ V → P6 (V ×k A) ∈ V) |
7 | 1, 6 | syl5eqel 2437 | 1 ⊢ (A ∈ V → ⋃1A ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 Vcvv 2859 ⋃1cuni1 4133 ×k cxpk 4174 P6 cp6 4178 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-p6 4191 |
This theorem is referenced by: uni1ex 4293 uniexg 4316 intexg 4319 coexg 4749 siexg 4752 |
Copyright terms: Public domain | W3C validator |