New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnsex | GIF version |
Description: The function with domain relationship exists. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
fnsex | ⊢ Fns ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fns 5763 | . . 3 ⊢ Fns = {〈f, a〉 ∣ f Fn a} | |
2 | vex 2863 | . . . . . . . 8 ⊢ a ∈ V | |
3 | opelxp 4812 | . . . . . . . 8 ⊢ (〈f, a〉 ∈ ( Funs × V) ↔ (f ∈ Funs ∧ a ∈ V)) | |
4 | 2, 3 | mpbiran2 885 | . . . . . . 7 ⊢ (〈f, a〉 ∈ ( Funs × V) ↔ f ∈ Funs ) |
5 | vex 2863 | . . . . . . . 8 ⊢ f ∈ V | |
6 | 5 | elfuns 5830 | . . . . . . 7 ⊢ (f ∈ Funs ↔ Fun f) |
7 | 4, 6 | bitri 240 | . . . . . 6 ⊢ (〈f, a〉 ∈ ( Funs × V) ↔ Fun f) |
8 | eqcom 2355 | . . . . . . 7 ⊢ ((1st “ f) = a ↔ a = (1st “ f)) | |
9 | dfdm4 5508 | . . . . . . . 8 ⊢ dom f = (1st “ f) | |
10 | 9 | eqeq1i 2360 | . . . . . . 7 ⊢ (dom f = a ↔ (1st “ f) = a) |
11 | df-br 4641 | . . . . . . . 8 ⊢ (fImage1st a ↔ 〈f, a〉 ∈ Image1st ) | |
12 | 5, 2 | brimage 5794 | . . . . . . . 8 ⊢ (fImage1st a ↔ a = (1st “ f)) |
13 | 11, 12 | bitr3i 242 | . . . . . . 7 ⊢ (〈f, a〉 ∈ Image1st ↔ a = (1st “ f)) |
14 | 8, 10, 13 | 3bitr4ri 269 | . . . . . 6 ⊢ (〈f, a〉 ∈ Image1st ↔ dom f = a) |
15 | 7, 14 | anbi12i 678 | . . . . 5 ⊢ ((〈f, a〉 ∈ ( Funs × V) ∧ 〈f, a〉 ∈ Image1st ) ↔ (Fun f ∧ dom f = a)) |
16 | elin 3220 | . . . . 5 ⊢ (〈f, a〉 ∈ (( Funs × V) ∩ Image1st ) ↔ (〈f, a〉 ∈ ( Funs × V) ∧ 〈f, a〉 ∈ Image1st )) | |
17 | df-fn 4791 | . . . . 5 ⊢ (f Fn a ↔ (Fun f ∧ dom f = a)) | |
18 | 15, 16, 17 | 3bitr4i 268 | . . . 4 ⊢ (〈f, a〉 ∈ (( Funs × V) ∩ Image1st ) ↔ f Fn a) |
19 | 18 | opabbi2i 4867 | . . 3 ⊢ (( Funs × V) ∩ Image1st ) = {〈f, a〉 ∣ f Fn a} |
20 | 1, 19 | eqtr4i 2376 | . 2 ⊢ Fns = (( Funs × V) ∩ Image1st ) |
21 | funsex 5829 | . . . 4 ⊢ Funs ∈ V | |
22 | vvex 4110 | . . . 4 ⊢ V ∈ V | |
23 | 21, 22 | xpex 5116 | . . 3 ⊢ ( Funs × V) ∈ V |
24 | 1stex 4740 | . . . 4 ⊢ 1st ∈ V | |
25 | 24 | imageex 5802 | . . 3 ⊢ Image1st ∈ V |
26 | 23, 25 | inex 4106 | . 2 ⊢ (( Funs × V) ∩ Image1st ) ∈ V |
27 | 20, 26 | eqeltri 2423 | 1 ⊢ Fns ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∩ cin 3209 〈cop 4562 {copab 4623 class class class wbr 4640 1st c1st 4718 “ cima 4723 × cxp 4771 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 Imagecimage 5754 Funs cfuns 5760 Fns cfns 5762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 |
This theorem is referenced by: enex 6032 ovcelem1 6172 ceex 6175 |
Copyright terms: Public domain | W3C validator |