NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw10b GIF version

Theorem pw10b 4167
Description: The unit power class of a class is empty iff the class itself is empty. (Contributed by SF, 22-Jan-2015.)
Assertion
Ref Expression
pw10b (1A = A = )

Proof of Theorem pw10b
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 n0 3560 . . . 4 (Ax x A)
2 snelpw1 4147 . . . . . 6 ({x} 1Ax A)
3 ne0i 3557 . . . . . 6 ({x} 1A1A)
42, 3sylbir 204 . . . . 5 (x A1A)
54exlimiv 1634 . . . 4 (x x A1A)
61, 5sylbi 187 . . 3 (A1A)
76necon4i 2577 . 2 (1A = A = )
8 pw1eq 4144 . . 3 (A = 1A = 1)
9 pw10 4162 . . 3 1 =
108, 9syl6eq 2401 . 2 (A = 1A = )
117, 10impbii 180 1 (1A = A = )
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541   = wceq 1642   wcel 1710  wne 2517  c0 3551  {csn 3738  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  ncfinlower  4484
  Copyright terms: Public domain W3C validator