Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem4 Structured version   Visualization version   GIF version

Theorem 3cubeslem4 39335
Description: Lemma for 3cubes 39336. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem4 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))

Proof of Theorem 3cubeslem4
StepHypRef Expression
1 3re 11718 . . . . . . . . . . . . 13 3 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℝ)
3 3nn0 11916 . . . . . . . . . . . . 13 3 ∈ ℕ0
43a1i 11 . . . . . . . . . . . 12 (⊤ → 3 ∈ ℕ0)
52, 4reexpcld 13528 . . . . . . . . . . 11 (⊤ → (3↑3) ∈ ℝ)
65mptru 1544 . . . . . . . . . 10 (3↑3) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℝ)
8 3cubeslem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℚ)
9 qre 12354 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
103a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 3 ∈ ℕ0)
119, 10reexpcld 13528 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℝ)
128, 11syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℝ)
137, 12remulcld 10671 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑3)) ∈ ℝ)
14 1red 10642 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11068 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℝ)
1615recnd 10669 . . . . . 6 (𝜑 → (((3↑3) · (𝐴↑3)) − 1) ∈ ℂ)
173a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
1816, 17expcld 13511 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑3)) − 1)↑3) ∈ ℂ)
1913renegcld 11067 . . . . . . . . 9 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℝ)
2019recnd 10669 . . . . . . . 8 (𝜑 → -((3↑3) · (𝐴↑3)) ∈ ℂ)
211a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℝ)
2221recnd 10669 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
2322sqcld 13509 . . . . . . . . 9 (𝜑 → (3↑2) ∈ ℂ)
24 qcn 12363 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
258, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2623, 25mulcld 10661 . . . . . . . 8 (𝜑 → ((3↑2) · 𝐴) ∈ ℂ)
2720, 26addcld 10660 . . . . . . 7 (𝜑 → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℂ)
28 1cnd 10636 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2927, 28addcld 10660 . . . . . 6 (𝜑 → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℂ)
3029, 17expcld 13511 . . . . 5 (𝜑 → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) ∈ ℂ)
317recnd 10669 . . . . . . . . 9 (𝜑 → (3↑3) ∈ ℂ)
3225sqcld 13509 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
3331, 32mulcld 10661 . . . . . . . 8 (𝜑 → ((3↑3) · (𝐴↑2)) ∈ ℂ)
3433, 26addcld 10660 . . . . . . 7 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℂ)
3534, 22addcld 10660 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℂ)
3635, 17expcld 13511 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ∈ ℂ)
3783cubeslem2 39331 . . . . . . 7 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3837neqned 3023 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
39 3z 12016 . . . . . . 7 3 ∈ ℤ
4039a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
4135, 38, 40expne0d 13517 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3) ≠ 0)
4218, 30, 36, 41divdird 11454 . . . 4 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4342oveq1d 7171 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4418, 30addcld 10660 . . . 4 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) ∈ ℂ)
4534, 17expcld 13511 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) ∈ ℂ)
4644, 45, 36, 41divdird 11454 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
4716, 35, 38, 17expdivd 13525 . . . . . 6 (𝜑 → (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
4847oveq1d 7171 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
4948oveq1d 7171 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5029, 35, 38, 17expdivd 13525 . . . . . 6 (𝜑 → ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5150oveq2d 7172 . . . . 5 (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5251oveq1d 7171 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5334, 35, 38, 17expdivd 13525 . . . . 5 (𝜑 → (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5453oveq2d 7172 . . . 4 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5549, 52, 543eqtrd 2860 . . 3 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3))))
5643, 46, 553eqtr4rd 2867 . 2 (𝜑 → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5783cubeslem3 39334 . . 3 (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)))
5857oveq1d 7171 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)))
5925, 36, 41divcan4d 11422 . 2 (𝜑 → ((𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) / (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = 𝐴)
6056, 58, 593eqtr2rd 2863 1 (𝜑𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wtru 1538  wcel 2114  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  3c3 11694  0cn0 11898  cz 11982  cq 12349  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-seq 13371  df-exp 13431  df-dvds 15608
This theorem is referenced by:  3cubes  39336
  Copyright terms: Public domain W3C validator