MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7t3e21 Structured version   Visualization version   GIF version

Theorem 7t3e21 11476
Description: 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7t3e21 (7 · 3) = 21

Proof of Theorem 7t3e21
StepHypRef Expression
1 7nn0 11156 . 2 7 ∈ ℕ0
2 2nn0 11151 . 2 2 ∈ ℕ0
3 df-3 10922 . 2 3 = (2 + 1)
4 7t2e14 11475 . 2 (7 · 2) = 14
5 1nn0 11150 . . 3 1 ∈ ℕ0
6 4nn0 11153 . . 3 4 ∈ ℕ0
7 eqid 2604 . . 3 14 = 14
8 1p1e2 10976 . . 3 (1 + 1) = 2
91nn0cni 11146 . . . 4 7 ∈ ℂ
106nn0cni 11146 . . . 4 4 ∈ ℂ
11 7p4e11 11432 . . . 4 (7 + 4) = 11
129, 10, 11addcomli 10074 . . 3 (4 + 7) = 11
135, 6, 1, 7, 8, 5, 12decaddci 11407 . 2 (14 + 7) = 21
141, 2, 3, 4, 134t3lem 11458 1 (7 · 3) = 21
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  (class class class)co 6522  1c1 9788   · cmul 9792  2c2 10912  3c3 10913  4c4 10914  7c7 10917  cdc 11320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-ltxr 9930  df-sub 10114  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-7 10926  df-8 10927  df-9 10928  df-n0 11135  df-dec 11321
This theorem is referenced by:  7t4e28  11477  23prm  15605  prmlem2  15606  83prm  15609  163prm  15611  631prm  15613  1259prm  15622  log2ublem3  24387  log2ub  24388  ex-prmo  26469  257prm  39811
  Copyright terms: Public domain W3C validator