MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrhmeo Structured version   Visualization version   GIF version

Theorem xrhmeo 22500
Description: The bijection from [-1, 1] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
xrhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
xrhmeo.g 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
xrhmeo.j 𝐽 = (TopOpen‘ℂfld)
xrhmeo.k 𝐾 = (ordTop‘ ≤ )
Assertion
Ref Expression
xrhmeo (𝐺 Isom < , < ((-1[,]1), ℝ*) ∧ 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem xrhmeo
Dummy variables 𝑤 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12085 . . . 4 (-1[,]1) ⊆ ℝ*
2 xrltso 11811 . . . 4 < Or ℝ*
3 soss 4966 . . . 4 ((-1[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (-1[,]1)))
41, 2, 3mp2 9 . . 3 < Or (-1[,]1)
5 sopo 4965 . . . 4 ( < Or ℝ* → < Po ℝ*)
62, 5ax-mp 5 . . 3 < Po ℝ*
7 xrhmeo.g . . . . 5 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8 iccssxr 12085 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
9 neg1rr 10974 . . . . . . . . . . . 12 -1 ∈ ℝ
10 1re 9895 . . . . . . . . . . . 12 1 ∈ ℝ
119, 10elicc2i 12068 . . . . . . . . . . 11 (𝑦 ∈ (-1[,]1) ↔ (𝑦 ∈ ℝ ∧ -1 ≤ 𝑦𝑦 ≤ 1))
1211simp1bi 1068 . . . . . . . . . 10 (𝑦 ∈ (-1[,]1) → 𝑦 ∈ ℝ)
1312adantr 479 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ∈ ℝ)
14 simpr 475 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 0 ≤ 𝑦)
1511simp3bi 1070 . . . . . . . . . 10 (𝑦 ∈ (-1[,]1) → 𝑦 ≤ 1)
1615adantr 479 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ≤ 1)
17 0re 9896 . . . . . . . . . 10 0 ∈ ℝ
1817, 10elicc2i 12068 . . . . . . . . 9 (𝑦 ∈ (0[,]1) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ 1))
1913, 14, 16, 18syl3anbrc 1238 . . . . . . . 8 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ∈ (0[,]1))
20 xrhmeo.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
2120iccpnfcnv 22498 . . . . . . . . . . 11 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑣 ∈ (0[,]+∞) ↦ if(𝑣 = +∞, 1, (𝑣 / (1 + 𝑣)))))
2221simpli 472 . . . . . . . . . 10 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
23 f1of 6034 . . . . . . . . . 10 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
2422, 23ax-mp 5 . . . . . . . . 9 𝐹:(0[,]1)⟶(0[,]+∞)
2524ffvelrni 6250 . . . . . . . 8 (𝑦 ∈ (0[,]1) → (𝐹𝑦) ∈ (0[,]+∞))
2619, 25syl 17 . . . . . . 7 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → (𝐹𝑦) ∈ (0[,]+∞))
278, 26sseldi 3565 . . . . . 6 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → (𝐹𝑦) ∈ ℝ*)
2812adantr 479 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 𝑦 ∈ ℝ)
2928renegcld 10308 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ∈ ℝ)
30 letric 9988 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦𝑦 ≤ 0))
3117, 12, 30sylancr 693 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → (0 ≤ 𝑦𝑦 ≤ 0))
3231orcanai 949 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 𝑦 ≤ 0)
3328le0neg1d 10450 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
3432, 33mpbid 220 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 0 ≤ -𝑦)
3511simp2bi 1069 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → -1 ≤ 𝑦)
3635adantr 479 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -1 ≤ 𝑦)
37 lenegcon1 10383 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1))
3810, 28, 37sylancr 693 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1))
3936, 38mpbid 220 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ≤ 1)
4017, 10elicc2i 12068 . . . . . . . . . 10 (-𝑦 ∈ (0[,]1) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 ≤ 1))
4129, 34, 39, 40syl3anbrc 1238 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ∈ (0[,]1))
4224ffvelrni 6250 . . . . . . . . 9 (-𝑦 ∈ (0[,]1) → (𝐹‘-𝑦) ∈ (0[,]+∞))
4341, 42syl 17 . . . . . . . 8 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝐹‘-𝑦) ∈ (0[,]+∞))
448, 43sseldi 3565 . . . . . . 7 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝐹‘-𝑦) ∈ ℝ*)
4544xnegcld 11961 . . . . . 6 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑒(𝐹‘-𝑦) ∈ ℝ*)
4627, 45ifclda 4069 . . . . 5 (𝑦 ∈ (-1[,]1) → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ∈ ℝ*)
477, 46fmpti 6275 . . . 4 𝐺:(-1[,]1)⟶ℝ*
48 frn 5951 . . . . . 6 (𝐺:(-1[,]1)⟶ℝ* → ran 𝐺 ⊆ ℝ*)
4947, 48ax-mp 5 . . . . 5 ran 𝐺 ⊆ ℝ*
50 ssabral 3635 . . . . . . 7 (ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))} ↔ ∀𝑧 ∈ ℝ*𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
51 0le1 10402 . . . . . . . . . . . . 13 0 ≤ 1
52 le0neg2 10388 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
5310, 52ax-mp 5 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ -1 ≤ 0)
5451, 53mpbi 218 . . . . . . . . . . . 12 -1 ≤ 0
55 1le1 10506 . . . . . . . . . . . 12 1 ≤ 1
56 iccss 12070 . . . . . . . . . . . 12 (((-1 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (-1 ≤ 0 ∧ 1 ≤ 1)) → (0[,]1) ⊆ (-1[,]1))
579, 10, 54, 55, 56mp4an 704 . . . . . . . . . . 11 (0[,]1) ⊆ (-1[,]1)
58 elxrge0 12110 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]+∞) ↔ (𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧))
59 f1ocnv 6046 . . . . . . . . . . . . . 14 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]+∞)–1-1-onto→(0[,]1))
60 f1of 6034 . . . . . . . . . . . . . 14 (𝐹:(0[,]+∞)–1-1-onto→(0[,]1) → 𝐹:(0[,]+∞)⟶(0[,]1))
6122, 59, 60mp2b 10 . . . . . . . . . . . . 13 𝐹:(0[,]+∞)⟶(0[,]1)
6261ffvelrni 6250 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]+∞) → (𝐹𝑧) ∈ (0[,]1))
6358, 62sylbir 223 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹𝑧) ∈ (0[,]1))
6457, 63sseldi 3565 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹𝑧) ∈ (-1[,]1))
6517, 10elicc2i 12068 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ (0[,]1) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ 1))
6665simp2bi 1069 . . . . . . . . . . 11 ((𝐹𝑧) ∈ (0[,]1) → 0 ≤ (𝐹𝑧))
6763, 66syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 0 ≤ (𝐹𝑧))
6858biimpri 216 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]+∞))
69 f1ocnvfv2 6410 . . . . . . . . . . . 12 ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝐹‘(𝐹𝑧)) = 𝑧)
7022, 68, 69sylancr 693 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹‘(𝐹𝑧)) = 𝑧)
7170eqcomd 2615 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 𝑧 = (𝐹‘(𝐹𝑧)))
72 breq2 4581 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (𝐹𝑧)))
73 fveq2 6087 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
7473eqeq2d 2619 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑧) → (𝑧 = (𝐹𝑦) ↔ 𝑧 = (𝐹‘(𝐹𝑧))))
7572, 74anbi12d 742 . . . . . . . . . . 11 (𝑦 = (𝐹𝑧) → ((0 ≤ 𝑦𝑧 = (𝐹𝑦)) ↔ (0 ≤ (𝐹𝑧) ∧ 𝑧 = (𝐹‘(𝐹𝑧)))))
7675rspcev 3281 . . . . . . . . . 10 (((𝐹𝑧) ∈ (-1[,]1) ∧ (0 ≤ (𝐹𝑧) ∧ 𝑧 = (𝐹‘(𝐹𝑧)))) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)))
7764, 67, 71, 76syl12anc 1315 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)))
78 iftrue 4041 . . . . . . . . . . . 12 (0 ≤ 𝑦 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = (𝐹𝑦))
7978eqeq2d 2619 . . . . . . . . . . 11 (0 ≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = (𝐹𝑦)))
8079biimpar 500 . . . . . . . . . 10 ((0 ≤ 𝑦𝑧 = (𝐹𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8180reximi 2993 . . . . . . . . 9 (∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8277, 81syl 17 . . . . . . . 8 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
83 xnegcl 11879 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ* → -𝑒𝑧 ∈ ℝ*)
8483adantr 479 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒𝑧 ∈ ℝ*)
85 0xr 9942 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
86 xrletri 11821 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ*𝑧 ∈ ℝ*) → (0 ≤ 𝑧𝑧 ≤ 0))
8785, 86mpan 701 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (0 ≤ 𝑧𝑧 ≤ 0))
8887ord 390 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧𝑧 ≤ 0))
89 xle0neg1 11887 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑧 ≤ 0 ↔ 0 ≤ -𝑒𝑧))
9088, 89sylibd 227 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧 → 0 ≤ -𝑒𝑧))
9190imp 443 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → 0 ≤ -𝑒𝑧)
92 elxrge0 12110 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ (0[,]+∞) ↔ (-𝑒𝑧 ∈ ℝ* ∧ 0 ≤ -𝑒𝑧))
9384, 91, 92sylanbrc 694 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒𝑧 ∈ (0[,]+∞))
9461ffvelrni 6250 . . . . . . . . . . . . . 14 (-𝑒𝑧 ∈ (0[,]+∞) → (𝐹‘-𝑒𝑧) ∈ (0[,]1))
9593, 94syl 17 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ (0[,]1))
9657, 95sseldi 3565 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ (-1[,]1))
97 iccssre 12084 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
989, 10, 97mp2an 703 . . . . . . . . . . . . . 14 (-1[,]1) ⊆ ℝ
9998, 96sseldi 3565 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℝ)
100 iccneg 12122 . . . . . . . . . . . . . 14 ((-1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐹‘-𝑒𝑧) ∈ ℝ) → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
1019, 10, 100mp3an12 1405 . . . . . . . . . . . . 13 ((𝐹‘-𝑒𝑧) ∈ ℝ → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
10299, 101syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
10396, 102mpbid 220 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1))
104 negneg1e1 10977 . . . . . . . . . . . 12 --1 = 1
105104oveq2i 6537 . . . . . . . . . . 11 (-1[,]--1) = (-1[,]1)
106103, 105syl6eleq 2697 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -(𝐹‘-𝑒𝑧) ∈ (-1[,]1))
107 xle0neg2 11888 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ* → (0 ≤ 𝑧 ↔ -𝑒𝑧 ≤ 0))
108107notbid 306 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧 ↔ ¬ -𝑒𝑧 ≤ 0))
109108biimpa 499 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ -𝑒𝑧 ≤ 0)
110 f1ocnvfv2 6410 . . . . . . . . . . . . . . 15 ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ -𝑒𝑧 ∈ (0[,]+∞)) → (𝐹‘(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
11122, 93, 110sylancr 693 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
112 0elunit 12119 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
113 ax-1ne0 9861 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ 0
114 neeq2 2844 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (1 ≠ 𝑥 ↔ 1 ≠ 0))
115113, 114mpbiri 246 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → 1 ≠ 𝑥)
116115necomd 2836 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → 𝑥 ≠ 1)
117 ifnefalse 4047 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≠ 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
119 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → 𝑥 = 0)
120 oveq2 6534 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
121 1m0e1 10980 . . . . . . . . . . . . . . . . . . . . 21 (1 − 0) = 1
122120, 121syl6eq 2659 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (1 − 𝑥) = 1)
123119, 122oveq12d 6544 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = (0 / 1))
124 ax-1cn 9850 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
125124, 113div0i 10610 . . . . . . . . . . . . . . . . . . 19 (0 / 1) = 0
126123, 125syl6eq 2659 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = 0)
127118, 126eqtrd 2643 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = 0)
128 c0ex 9890 . . . . . . . . . . . . . . . . 17 0 ∈ V
129127, 20, 128fvmpt 6175 . . . . . . . . . . . . . . . 16 (0 ∈ (0[,]1) → (𝐹‘0) = 0)
130112, 129ax-mp 5 . . . . . . . . . . . . . . 15 (𝐹‘0) = 0
131130a1i 11 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘0) = 0)
132111, 131breq12d 4590 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0) ↔ -𝑒𝑧 ≤ 0))
133109, 132mtbird 313 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))
134 eqid 2609 . . . . . . . . . . . . . . . 16 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
13520, 134iccpnfhmeo 22499 . . . . . . . . . . . . . . 15 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo((ordTop‘ ≤ ) ↾t (0[,]+∞))))
136135simpli 472 . . . . . . . . . . . . . 14 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
137 iccssxr 12085 . . . . . . . . . . . . . . 15 (0[,]1) ⊆ ℝ*
138137, 8pm3.2i 469 . . . . . . . . . . . . . 14 ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*)
139 leisorel 13055 . . . . . . . . . . . . . 14 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) ∧ ((𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
140136, 138, 139mp3an12 1405 . . . . . . . . . . . . 13 (((𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
14195, 112, 140sylancl 692 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
142133, 141mtbird 313 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ (𝐹‘-𝑒𝑧) ≤ 0)
14399le0neg1d 10450 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ 0 ≤ -(𝐹‘-𝑒𝑧)))
144142, 143mtbid 312 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ -(𝐹‘-𝑒𝑧))
145 unitssre 12148 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
146145, 95sseldi 3565 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℝ)
147146recnd 9924 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℂ)
148147negnegd 10234 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → --(𝐹‘-𝑒𝑧) = (𝐹‘-𝑒𝑧))
149148fveq2d 6091 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘--(𝐹‘-𝑒𝑧)) = (𝐹‘(𝐹‘-𝑒𝑧)))
150149, 111eqtrd 2643 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
151 xnegeq 11873 . . . . . . . . . . . 12 ((𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒𝑧 → -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒-𝑒𝑧)
152150, 151syl 17 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒-𝑒𝑧)
153 xnegneg 11880 . . . . . . . . . . . 12 (𝑧 ∈ ℝ* → -𝑒-𝑒𝑧 = 𝑧)
154153adantr 479 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒-𝑒𝑧 = 𝑧)
155152, 154eqtr2d 2644 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
156 breq2 4581 . . . . . . . . . . . . 13 (𝑦 = -(𝐹‘-𝑒𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ -(𝐹‘-𝑒𝑧)))
157156notbid 306 . . . . . . . . . . . 12 (𝑦 = -(𝐹‘-𝑒𝑧) → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ -(𝐹‘-𝑒𝑧)))
158 negeq 10124 . . . . . . . . . . . . . . 15 (𝑦 = -(𝐹‘-𝑒𝑧) → -𝑦 = --(𝐹‘-𝑒𝑧))
159158fveq2d 6091 . . . . . . . . . . . . . 14 (𝑦 = -(𝐹‘-𝑒𝑧) → (𝐹‘-𝑦) = (𝐹‘--(𝐹‘-𝑒𝑧)))
160 xnegeq 11873 . . . . . . . . . . . . . 14 ((𝐹‘-𝑦) = (𝐹‘--(𝐹‘-𝑒𝑧)) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
161159, 160syl 17 . . . . . . . . . . . . 13 (𝑦 = -(𝐹‘-𝑒𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
162161eqeq2d 2619 . . . . . . . . . . . 12 (𝑦 = -(𝐹‘-𝑒𝑧) → (𝑧 = -𝑒(𝐹‘-𝑦) ↔ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧))))
163157, 162anbi12d 742 . . . . . . . . . . 11 (𝑦 = -(𝐹‘-𝑒𝑧) → ((¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) ↔ (¬ 0 ≤ -(𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))))
164163rspcev 3281 . . . . . . . . . 10 ((-(𝐹‘-𝑒𝑧) ∈ (-1[,]1) ∧ (¬ 0 ≤ -(𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)))
165106, 144, 155, 164syl12anc 1315 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)))
166 iffalse 4044 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑦 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = -𝑒(𝐹‘-𝑦))
167166eqeq2d 2619 . . . . . . . . . . 11 (¬ 0 ≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = -𝑒(𝐹‘-𝑦)))
168167biimpar 500 . . . . . . . . . 10 ((¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
169168reximi 2993 . . . . . . . . 9 (∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
170165, 169syl 17 . . . . . . . 8 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
17182, 170pm2.61dan 827 . . . . . . 7 (𝑧 ∈ ℝ* → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
17250, 171mprgbir 2910 . . . . . 6 * ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))}
1737rnmpt 5278 . . . . . 6 ran 𝐺 = {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))}
174172, 173sseqtr4i 3600 . . . . 5 * ⊆ ran 𝐺
17549, 174eqssi 3583 . . . 4 ran 𝐺 = ℝ*
176 dffo2 6016 . . . 4 (𝐺:(-1[,]1)–onto→ℝ* ↔ (𝐺:(-1[,]1)⟶ℝ* ∧ ran 𝐺 = ℝ*))
17747, 175, 176mpbir2an 956 . . 3 𝐺:(-1[,]1)–onto→ℝ*
178 breq1 4580 . . . . . . 7 ((𝐹𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) → ((𝐹𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
179 breq1 4580 . . . . . . 7 (-𝑒(𝐹‘-𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) → (-𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
180 simpl3 1058 . . . . . . . . 9 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 < 𝑤)
181 simpl1 1056 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1))
182 simpr 475 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑧)
183 breq2 4581 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑧))
184 eleq1 2675 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑦 ∈ (0[,]1) ↔ 𝑧 ∈ (0[,]1)))
185183, 184imbi12d 332 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((0 ≤ 𝑦𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑧𝑧 ∈ (0[,]1))))
18619ex 448 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → (0 ≤ 𝑦𝑦 ∈ (0[,]1)))
187185, 186vtoclga 3244 . . . . . . . . . . 11 (𝑧 ∈ (-1[,]1) → (0 ≤ 𝑧𝑧 ∈ (0[,]1)))
188181, 182, 187sylc 62 . . . . . . . . . 10 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]1))
189 simpl2 1057 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (-1[,]1))
19017a1i 11 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ∈ ℝ)
19198, 181sseldi 3565 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ ℝ)
19298, 189sseldi 3565 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ ℝ)
193191, 192, 180ltled 10036 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧𝑤)
194190, 191, 192, 182, 193letrd 10045 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑤)
195 breq2 4581 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑤))
196 eleq1 2675 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (0[,]1) ↔ 𝑤 ∈ (0[,]1)))
197195, 196imbi12d 332 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((0 ≤ 𝑦𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑤𝑤 ∈ (0[,]1))))
198197, 186vtoclga 3244 . . . . . . . . . . 11 (𝑤 ∈ (-1[,]1) → (0 ≤ 𝑤𝑤 ∈ (0[,]1)))
199189, 194, 198sylc 62 . . . . . . . . . 10 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (0[,]1))
200 isorel 6453 . . . . . . . . . . 11 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1))) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
201136, 200mpan 701 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
202188, 199, 201syl2anc 690 . . . . . . . . 9 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
203180, 202mpbid 220 . . . . . . . 8 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹𝑧) < (𝐹𝑤))
204194iftrued 4043 . . . . . . . 8 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) = (𝐹𝑤))
205203, 204breqtrrd 4605 . . . . . . 7 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
206 breq2 4581 . . . . . . . 8 ((𝐹𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < (𝐹𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
207 breq2 4581 . . . . . . . 8 (-𝑒(𝐹‘-𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
208 simpl1 1056 . . . . . . . . . . . . . 14 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1))
209 simpr 475 . . . . . . . . . . . . . 14 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ 𝑧)
210183notbid 306 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧))
211 negeq 10124 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → -𝑦 = -𝑧)
212211eleq1d 2671 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (-𝑦 ∈ (0[,]1) ↔ -𝑧 ∈ (0[,]1)))
213210, 212imbi12d 332 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1))))
21441ex 448 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-1[,]1) → (¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)))
215213, 214vtoclga 3244 . . . . . . . . . . . . . 14 (𝑧 ∈ (-1[,]1) → (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1)))
216208, 209, 215sylc 62 . . . . . . . . . . . . 13 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑧 ∈ (0[,]1))
217216adantr 479 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1))
21824ffvelrni 6250 . . . . . . . . . . . 12 (-𝑧 ∈ (0[,]1) → (𝐹‘-𝑧) ∈ (0[,]+∞))
219217, 218syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞))
2208, 219sseldi 3565 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ ℝ*)
221220xnegcld 11961 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) ∈ ℝ*)
22285a1i 11 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ∈ ℝ*)
223 simpll2 1093 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1))
224 simpr 475 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤)
225223, 224, 198sylc 62 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]1))
22624ffvelrni 6250 . . . . . . . . . . 11 (𝑤 ∈ (0[,]1) → (𝐹𝑤) ∈ (0[,]+∞))
227225, 226syl 17 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹𝑤) ∈ (0[,]+∞))
2288, 227sseldi 3565 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹𝑤) ∈ ℝ*)
229209adantr 479 . . . . . . . . . . . . . 14 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑧)
230 simpll1 1092 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1))
23198, 230sseldi 3565 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ ℝ)
232 ltnle 9968 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧))
233231, 17, 232sylancl 692 . . . . . . . . . . . . . 14 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧))
234229, 233mpbird 245 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 < 0)
235231lt0neg1d 10448 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ 0 < -𝑧))
236234, 235mpbid 220 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < -𝑧)
237 isorel 6453 . . . . . . . . . . . . . 14 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
238136, 237mpan 701 . . . . . . . . . . . . 13 ((0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
239112, 217, 238sylancr 693 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
240236, 239mpbid 220 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘0) < (𝐹‘-𝑧))
241130, 240syl5eqbrr 4613 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < (𝐹‘-𝑧))
242 xlt0neg2 11886 . . . . . . . . . . 11 ((𝐹‘-𝑧) ∈ ℝ* → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0))
243220, 242syl 17 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0))
244241, 243mpbid 220 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < 0)
245 elxrge0 12110 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
246245simprbi 478 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
247227, 246syl 17 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ (𝐹𝑤))
248221, 222, 228, 244, 247xrltletrd 11829 . . . . . . . 8 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < (𝐹𝑤))
249 simpll3 1094 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 < 𝑤)
250 simpll1 1092 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1))
25198, 250sseldi 3565 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ ℝ)
252 simpll2 1093 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1))
25398, 252sseldi 3565 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ ℝ)
254251, 253ltnegd 10456 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝑧 < 𝑤 ↔ -𝑤 < -𝑧))
255249, 254mpbid 220 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 < -𝑧)
256 simpr 475 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑤)
257195notbid 306 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤))
258 negeq 10124 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → -𝑦 = -𝑤)
259258eleq1d 2671 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (-𝑦 ∈ (0[,]1) ↔ -𝑤 ∈ (0[,]1)))
260257, 259imbi12d 332 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1))))
261260, 214vtoclga 3244 . . . . . . . . . . . 12 (𝑤 ∈ (-1[,]1) → (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1)))
262252, 256, 261sylc 62 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 ∈ (0[,]1))
263216adantr 479 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1))
264 isorel 6453 . . . . . . . . . . . 12 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
265136, 264mpan 701 . . . . . . . . . . 11 ((-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
266262, 263, 265syl2anc 690 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
267255, 266mpbid 220 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) < (𝐹‘-𝑧))
26824ffvelrni 6250 . . . . . . . . . . . 12 (-𝑤 ∈ (0[,]1) → (𝐹‘-𝑤) ∈ (0[,]+∞))
269262, 268syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ (0[,]+∞))
2708, 269sseldi 3565 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ ℝ*)
271263, 218syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞))
2728, 271sseldi 3565 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ ℝ*)
273 xltneg 11883 . . . . . . . . . 10 (((𝐹‘-𝑤) ∈ ℝ* ∧ (𝐹‘-𝑧) ∈ ℝ*) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)))
274270, 272, 273syl2anc 690 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)))
275267, 274mpbid 220 . . . . . . . 8 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))
276206, 207, 248, 275ifbothda 4072 . . . . . . 7 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
277178, 179, 205, 276ifbothda 4072 . . . . . 6 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) → if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
2782773expia 1258 . . . . 5 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
279 fveq2 6087 . . . . . . . 8 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
280211fveq2d 6091 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹‘-𝑦) = (𝐹‘-𝑧))
281 xnegeq 11873 . . . . . . . . 9 ((𝐹‘-𝑦) = (𝐹‘-𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧))
282280, 281syl 17 . . . . . . . 8 (𝑦 = 𝑧 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧))
283183, 279, 282ifbieq12d 4062 . . . . . . 7 (𝑦 = 𝑧 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)))
284 fvex 6097 . . . . . . . 8 (𝐹𝑧) ∈ V
285 xnegex 11874 . . . . . . . 8 -𝑒(𝐹‘-𝑧) ∈ V
286284, 285ifex 4105 . . . . . . 7 if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) ∈ V
287283, 7, 286fvmpt 6175 . . . . . 6 (𝑧 ∈ (-1[,]1) → (𝐺𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)))
288 fveq2 6087 . . . . . . . 8 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
289258fveq2d 6091 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐹‘-𝑦) = (𝐹‘-𝑤))
290 xnegeq 11873 . . . . . . . . 9 ((𝐹‘-𝑦) = (𝐹‘-𝑤) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤))
291289, 290syl 17 . . . . . . . 8 (𝑦 = 𝑤 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤))
292195, 288, 291ifbieq12d 4062 . . . . . . 7 (𝑦 = 𝑤 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
293 fvex 6097 . . . . . . . 8 (𝐹𝑤) ∈ V
294 xnegex 11874 . . . . . . . 8 -𝑒(𝐹‘-𝑤) ∈ V
295293, 294ifex 4105 . . . . . . 7 if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ∈ V
296292, 7, 295fvmpt 6175 . . . . . 6 (𝑤 ∈ (-1[,]1) → (𝐺𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
297287, 296breqan12d 4593 . . . . 5 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → ((𝐺𝑧) < (𝐺𝑤) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
298278, 297sylibrd 247 . . . 4 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤)))
299298rgen2a 2959 . . 3 𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤))
300 soisoi 6455 . . 3 ((( < Or (-1[,]1) ∧ < Po ℝ*) ∧ (𝐺:(-1[,]1)–onto→ℝ* ∧ ∀𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤)))) → 𝐺 Isom < , < ((-1[,]1), ℝ*))
3014, 6, 177, 299, 300mp4an 704 . 2 𝐺 Isom < , < ((-1[,]1), ℝ*)
302 letsr 16998 . . . . . 6 ≤ ∈ TosetRel
303302elexi 3185 . . . . 5 ≤ ∈ V
304303inex1 4721 . . . 4 ( ≤ ∩ ((-1[,]1) × (-1[,]1))) ∈ V
305 ssid 3586 . . . . . . 7 * ⊆ ℝ*
306 leiso 13054 . . . . . . 7 (((-1[,]1) ⊆ ℝ* ∧ ℝ* ⊆ ℝ*) → (𝐺 Isom < , < ((-1[,]1), ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*)))
3071, 305, 306mp2an 703 . . . . . 6 (𝐺 Isom < , < ((-1[,]1), ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*))
308301, 307mpbi 218 . . . . 5 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*)
309 isores1 6461 . . . . 5 (𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*) ↔ 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*))
310308, 309mpbi 218 . . . 4 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)
311 tsrps 16992 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
312302, 311ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
313 ledm 16995 . . . . . . . 8 * = dom ≤
314313psssdm 16987 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (-1[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1))
315312, 1, 314mp2an 703 . . . . . 6 dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1)
316315eqcomi 2618 . . . . 5 (-1[,]1) = dom ( ≤ ∩ ((-1[,]1) × (-1[,]1)))
317316, 313ordthmeo 21362 . . . 4 ((( ≤ ∩ ((-1[,]1) × (-1[,]1))) ∈ V ∧ ≤ ∈ TosetRel ∧ 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)) → 𝐺 ∈ ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ )))
318304, 302, 310, 317mp3an 1415 . . 3 𝐺 ∈ ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ ))
319 xrhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
320 eqid 2609 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
321319, 320xrrest2 22366 . . . . . 6 ((-1[,]1) ⊆ ℝ → (𝐽t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t (-1[,]1)))
32298, 321ax-mp 5 . . . . 5 (𝐽t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t (-1[,]1))
323 ordtresticc 20784 . . . . 5 ((ordTop‘ ≤ ) ↾t (-1[,]1)) = (ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))
324322, 323eqtri 2631 . . . 4 (𝐽t (-1[,]1)) = (ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))
325324oveq1i 6536 . . 3 ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )) = ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ ))
326318, 325eleqtrri 2686 . 2 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ ))
327301, 326pm3.2i 469 1 (𝐺 Isom < , < ((-1[,]1), ℝ*) ∧ 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  {cab 2595  wne 2779  wral 2895  wrex 2896  Vcvv 3172  cin 3538  wss 3539  ifcif 4035   class class class wbr 4577  cmpt 4637   Po wpo 4946   Or wor 4947   × cxp 5025  ccnv 5026  dom cdm 5027  ran crn 5028  wf 5785  ontowfo 5787  1-1-ontowf1o 5788  cfv 5789   Isom wiso 5790  (class class class)co 6526  cr 9791  0cc0 9792  1c1 9793   + caddc 9795  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10535  -𝑒cxne 11777  [,]cicc 12007  t crest 15852  TopOpenctopn 15853  ordTopcordt 15930  PosetRelcps 16969   TosetRel ctsr 16970  fldccnfld 19515  Homeochmeo 21313  IIcii 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ioc 12009  df-ico 12010  df-icc 12011  df-fz 12155  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-plusg 15729  df-mulr 15730  df-starv 15731  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-rest 15854  df-topn 15855  df-topgen 15875  df-ordt 15932  df-ps 16971  df-tsr 16972  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cn 20788  df-hmeo 21315  df-xms 21882  df-ms 21883  df-ii 22435
This theorem is referenced by:  xrhmph  22501
  Copyright terms: Public domain W3C validator