MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Structured version   Visualization version   GIF version

Theorem atantayl 24564
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
Assertion
Ref Expression
atantayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11667 . . 3 ℕ = (ℤ‘1)
2 1zzd 11352 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 ax-icn 9939 . . . 4 i ∈ ℂ
4 halfcl 11201 . . . 4 (i ∈ ℂ → (i / 2) ∈ ℂ)
53, 4mp1i 13 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i / 2) ∈ ℂ)
6 simpl 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
7 mulcl 9964 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
83, 6, 7sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i · 𝐴) ∈ ℂ)
98negcld 10323 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(i · 𝐴) ∈ ℂ)
108absnegd 14122 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘(i · 𝐴)))
11 absmul 13968 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
123, 6, 11sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
13 absi 13960 . . . . . . . . . . 11 (abs‘i) = 1
1413oveq1i 6614 . . . . . . . . . 10 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
15 abscl 13952 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1615adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
1716recnd 10012 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
1817mulid2d 10002 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
1914, 18syl5eq 2667 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘i) · (abs‘𝐴)) = (abs‘𝐴))
2010, 12, 193eqtrd 2659 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘𝐴))
21 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
2220, 21eqbrtrd 4635 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) < 1)
23 logtayl 24306 . . . . . . 7 ((-(i · 𝐴) ∈ ℂ ∧ (abs‘-(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
249, 22, 23syl2anc 692 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
25 ax-1cn 9938 . . . . . . . . 9 1 ∈ ℂ
26 subneg 10274 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2725, 8, 26sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2827fveq2d 6152 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − -(i · 𝐴))) = (log‘(1 + (i · 𝐴))))
2928negeqd 10219 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − -(i · 𝐴))) = -(log‘(1 + (i · 𝐴))))
3024, 29breqtrd 4639 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 + (i · 𝐴))))
31 seqex 12743 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V
3231a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V)
3310, 22eqbrtrrd 4637 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) < 1)
34 logtayl 24306 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (abs‘(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
358, 33, 34syl2anc 692 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
36 oveq2 6612 . . . . . . . . . . 11 (𝑛 = 𝑚 → (-(i · 𝐴)↑𝑛) = (-(i · 𝐴)↑𝑚))
37 id 22 . . . . . . . . . . 11 (𝑛 = 𝑚𝑛 = 𝑚)
3836, 37oveq12d 6622 . . . . . . . . . 10 (𝑛 = 𝑚 → ((-(i · 𝐴)↑𝑛) / 𝑛) = ((-(i · 𝐴)↑𝑚) / 𝑚))
39 eqid 2621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))
40 ovex 6632 . . . . . . . . . 10 ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ V
4138, 39, 40fvmpt 6239 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
4241adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
43 nnnn0 11243 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
44 expcl 12818 . . . . . . . . . 10 ((-(i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
459, 43, 44syl2an 494 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
46 nncn 10972 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4746adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
48 nnne0 10997 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
4948adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5045, 47, 49divcld 10745 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
5142, 50eqeltrd 2698 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
521, 2, 51serf 12769 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
5352ffvelrnda 6315 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
54 oveq2 6612 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((i · 𝐴)↑𝑛) = ((i · 𝐴)↑𝑚))
5554, 37oveq12d 6622 . . . . . . . . . 10 (𝑛 = 𝑚 → (((i · 𝐴)↑𝑛) / 𝑛) = (((i · 𝐴)↑𝑚) / 𝑚))
56 eqid 2621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))
57 ovex 6632 . . . . . . . . . 10 (((i · 𝐴)↑𝑚) / 𝑚) ∈ V
5855, 56, 57fvmpt 6239 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
5958adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
60 expcl 12818 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((i · 𝐴)↑𝑚) ∈ ℂ)
618, 43, 60syl2an 494 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) ∈ ℂ)
6261, 47, 49divcld 10745 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
6359, 62eqeltrd 2698 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
641, 2, 63serf 12769 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
6564ffvelrnda 6315 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
66 simpr 477 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6766, 1syl6eleq 2708 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
68 simpl 473 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1))
69 elfznn 12312 . . . . . . 7 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
7068, 69, 51syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7168, 69, 63syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7238, 55oveq12d 6622 . . . . . . . . . 10 (𝑛 = 𝑚 → (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
73 eqid 2621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))
74 ovex 6632 . . . . . . . . . 10 (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ V
7572, 73, 74fvmpt 6239 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7675adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7742, 59oveq12d 6622 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7876, 77eqtr4d 2658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
7968, 69, 78syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
8067, 70, 71, 79sersub 12784 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))))‘𝑘) = ((seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) − (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘)))
811, 2, 30, 32, 35, 53, 65, 80climsub 14298 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))))
82 addcl 9962 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
8325, 8, 82sylancr 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ∈ ℂ)
84 bndatandm 24556 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
85 atandm2 24504 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8684, 85sylib 208 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8786simp3d 1073 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ≠ 0)
8883, 87logcld 24221 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
89 subcl 10224 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
9025, 8, 89sylancr 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ∈ ℂ)
9186simp2d 1072 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ≠ 0)
9290, 91logcld 24221 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
9388, 92neg2subd 10353 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9481, 93breqtrd 4639 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9550, 62subcld 10336 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ ℂ)
9676, 95eqeltrd 2698 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) ∈ ℂ)
973a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → i ∈ ℂ)
98 negicn 10226 . . . . . . . . 9 -i ∈ ℂ
9943adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
100 expcl 12818 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-i↑𝑚) ∈ ℂ)
10198, 99, 100sylancr 694 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i↑𝑚) ∈ ℂ)
102 expcl 12818 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (i↑𝑚) ∈ ℂ)
1033, 99, 102sylancr 694 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i↑𝑚) ∈ ℂ)
104101, 103subcld 10336 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i↑𝑚) − (i↑𝑚)) ∈ ℂ)
105 2cnd 11037 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
106 2ne0 11057 . . . . . . . 8 2 ≠ 0
107106a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ≠ 0)
10897, 104, 105, 107div23d 10782 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · ((-i↑𝑚) − (i↑𝑚))) / 2) = ((i / 2) · ((-i↑𝑚) − (i↑𝑚))))
109108oveq1d 6619 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)))
1105adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i / 2) ∈ ℂ)
111 expcl 12818 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
1126, 43, 111syl2an 494 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) ∈ ℂ)
113112, 47, 49divcld 10745 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝐴𝑚) / 𝑚) ∈ ℂ)
114110, 104, 113mulassd 10007 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))))
115101, 103, 112subdird 10431 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
1166adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
117 mulneg1 10410 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
1183, 116, 117sylancr 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i · 𝐴) = -(i · 𝐴))
119118oveq1d 6619 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = (-(i · 𝐴)↑𝑚))
12098a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → -i ∈ ℂ)
121120, 116, 99mulexpd 12963 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
122119, 121eqtr3d 2657 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
12397, 116, 99mulexpd 12963 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) = ((i↑𝑚) · (𝐴𝑚)))
124122, 123oveq12d 6622 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
125115, 124eqtr4d 2658 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)))
126125oveq1d 6619 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚))
127104, 112, 47, 49divassd 10780 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)))
12845, 61, 47, 49divsubdird 10784 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
129126, 127, 1283eqtr3d 2663 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
130129oveq2d 6620 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
131109, 114, 1303eqtrd 2659 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
132 oveq2 6612 . . . . . . . . . 10 (𝑛 = 𝑚 → (-i↑𝑛) = (-i↑𝑚))
133 oveq2 6612 . . . . . . . . . 10 (𝑛 = 𝑚 → (i↑𝑛) = (i↑𝑚))
134132, 133oveq12d 6622 . . . . . . . . 9 (𝑛 = 𝑚 → ((-i↑𝑛) − (i↑𝑛)) = ((-i↑𝑚) − (i↑𝑚)))
135134oveq2d 6620 . . . . . . . 8 (𝑛 = 𝑚 → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · ((-i↑𝑚) − (i↑𝑚))))
136135oveq1d 6619 . . . . . . 7 (𝑛 = 𝑚 → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = ((i · ((-i↑𝑚) − (i↑𝑚))) / 2))
137 oveq2 6612 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
138137, 37oveq12d 6622 . . . . . . 7 (𝑛 = 𝑚 → ((𝐴𝑛) / 𝑛) = ((𝐴𝑚) / 𝑚))
139136, 138oveq12d 6622 . . . . . 6 (𝑛 = 𝑚 → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
140 atantayl.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
141 ovex 6632 . . . . . 6 (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) ∈ V
142139, 140, 141fvmpt 6239 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
143142adantl 482 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
14476oveq2d 6620 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
145131, 143, 1443eqtr4d 2665 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)))
1461, 2, 5, 94, 96, 145isermulc2 14322 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
147 atanval 24511 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
14884, 147syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
149146, 148breqtrrd 4641 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186   class class class wbr 4613  cmpt 4673  dom cdm 5074  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881  ici 9882   + caddc 9883   · cmul 9885   < clt 10018  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cuz 11631  ...cfz 12268  seqcseq 12741  cexp 12800  abscabs 13908  cli 14149  logclog 24205  arctancatan 24491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-tan 14727  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-ulm 24035  df-log 24207  df-atan 24494
This theorem is referenced by:  atantayl2  24565
  Copyright terms: Public domain W3C validator