Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfioobd Structured version   Visualization version   GIF version

Theorem cncfioobd 39414
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfioobd.a (𝜑𝐴 ∈ ℝ)
cncfioobd.b (𝜑𝐵 ∈ ℝ)
cncfioobd.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfioobd.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfioobd.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfioobd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cncfioobd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cncfioobd.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cncfioobd.b . . 3 (𝜑𝐵 ∈ ℝ)
3 nfv 1840 . . . 4 𝑧𝜑
4 eqid 2621 . . . 4 (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))
5 cncfioobd.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6 cncfioobd.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
7 cncfioobd.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
83, 4, 1, 2, 5, 6, 7cncfiooicc 39411 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9 cniccbdd 23137 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
101, 2, 8, 9syl3anc 1323 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
11 nfv 1840 . . . . . 6 𝑦(𝜑𝑥 ∈ ℝ)
12 nfra1 2936 . . . . . 6 𝑦𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥
1311, 12nfan 1825 . . . . 5 𝑦((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
14 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
15 cncff 22604 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
165, 15syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
17 fdm 6008 . . . . . . . . . . . . . . 15 (𝐹:(𝐴(,)𝐵)⟶ℂ → dom 𝐹 = (𝐴(,)𝐵))
1816, 17syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 = (𝐴(,)𝐵))
1918eqcomd 2627 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) = dom 𝐹)
2019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹)
2114, 20eleqtrd 2700 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹)
221adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
232adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
2416adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
25 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
2618adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵))
2725, 26eleqtrd 2700 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵))
2822, 23, 24, 4, 27cncfioobdlem 39413 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦) = (𝐹𝑦))
2921, 28syldan 487 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦) = (𝐹𝑦))
3029eqcomd 2627 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦))
3130fveq2d 6152 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)))
3231ad4ant14 1290 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)))
33 simplr 791 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
34 ioossicc 12201 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
35 simpr 477 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
3634, 35sseldi 3581 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
37 rspa 2925 . . . . . . . 8 ((∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
3833, 36, 37syl2anc 692 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
3932, 38eqbrtrd 4635 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) ≤ 𝑥)
4039ex 450 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑦)) ≤ 𝑥))
4113, 40ralrimi 2951 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
4241ex 450 . . 3 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥))
4342reximdva 3011 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥))
4410, 43mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ifcif 4058   class class class wbr 4613  cmpt 4673  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  cle 10019  (,)cioo 12117  [,]cicc 12120  abscabs 13908  cnccncf 22587   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-cn 20941  df-cnp 20942  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536
This theorem is referenced by:  fourierdlem70  39700  fourierdlem71  39701
  Copyright terms: Public domain W3C validator