MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsgnsubg Structured version   Visualization version   GIF version

Theorem cnmsgnsubg 19971
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypothesis
Ref Expression
cnmsgnsubg.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
Assertion
Ref Expression
cnmsgnsubg {1, -1} ∈ (SubGrp‘𝑀)

Proof of Theorem cnmsgnsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmsgnsubg.m . 2 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
2 elpri 4230 . . 3 (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1))
3 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
4 ax-1cn 10032 . . . . 5 1 ∈ ℂ
53, 4syl6eqel 2738 . . . 4 (𝑥 = 1 → 𝑥 ∈ ℂ)
6 id 22 . . . . 5 (𝑥 = -1 → 𝑥 = -1)
7 neg1cn 11162 . . . . 5 -1 ∈ ℂ
86, 7syl6eqel 2738 . . . 4 (𝑥 = -1 → 𝑥 ∈ ℂ)
95, 8jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ)
102, 9syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ)
11 ax-1ne0 10043 . . . . . 6 1 ≠ 0
1211a1i 11 . . . . 5 (𝑥 = 1 → 1 ≠ 0)
133, 12eqnetrd 2890 . . . 4 (𝑥 = 1 → 𝑥 ≠ 0)
14 neg1ne0 11164 . . . . . 6 -1 ≠ 0
1514a1i 11 . . . . 5 (𝑥 = -1 → -1 ≠ 0)
166, 15eqnetrd 2890 . . . 4 (𝑥 = -1 → 𝑥 ≠ 0)
1713, 16jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0)
182, 17syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ≠ 0)
19 elpri 4230 . . 3 (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1))
20 oveq12 6699 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
214mulid1i 10080 . . . . . 6 (1 · 1) = 1
22 1ex 10073 . . . . . . 7 1 ∈ V
2322prid1 4329 . . . . . 6 1 ∈ {1, -1}
2421, 23eqeltri 2726 . . . . 5 (1 · 1) ∈ {1, -1}
2520, 24syl6eqel 2738 . . . 4 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
26 oveq12 6699 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1))
277mulid1i 10080 . . . . . 6 (-1 · 1) = -1
28 negex 10317 . . . . . . 7 -1 ∈ V
2928prid2 4330 . . . . . 6 -1 ∈ {1, -1}
3027, 29eqeltri 2726 . . . . 5 (-1 · 1) ∈ {1, -1}
3126, 30syl6eqel 2738 . . . 4 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
32 oveq12 6699 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1))
337mulid2i 10081 . . . . . 6 (1 · -1) = -1
3433, 29eqeltri 2726 . . . . 5 (1 · -1) ∈ {1, -1}
3532, 34syl6eqel 2738 . . . 4 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
36 oveq12 6699 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1))
37 neg1mulneg1e1 11283 . . . . . 6 (-1 · -1) = 1
3837, 23eqeltri 2726 . . . . 5 (-1 · -1) ∈ {1, -1}
3936, 38syl6eqel 2738 . . . 4 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
4025, 31, 35, 39ccase 1006 . . 3 (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1})
412, 19, 40syl2an 493 . 2 ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1})
42 oveq2 6698 . . . . 5 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
43 1div1e1 10755 . . . . . 6 (1 / 1) = 1
4443, 23eqeltri 2726 . . . . 5 (1 / 1) ∈ {1, -1}
4542, 44syl6eqel 2738 . . . 4 (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1})
46 oveq2 6698 . . . . 5 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
47 divneg2 10787 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
484, 4, 11, 47mp3an 1464 . . . . . . 7 -(1 / 1) = (1 / -1)
4943negeqi 10312 . . . . . . 7 -(1 / 1) = -1
5048, 49eqtr3i 2675 . . . . . 6 (1 / -1) = -1
5150, 29eqeltri 2726 . . . . 5 (1 / -1) ∈ {1, -1}
5246, 51syl6eqel 2738 . . . 4 (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1})
5345, 52jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1})
542, 53syl 17 . 2 (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1})
551, 10, 18, 41, 23, 54cnmsubglem 19857 1 {1, -1} ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  cdif 3604  {csn 4210  {cpr 4212  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   · cmul 9979  -cneg 10305   / cdiv 10722  s cress 15905  SubGrpcsubg 17635  mulGrpcmgp 18535  fldccnfld 19794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-subg 17638  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-cnfld 19795
This theorem is referenced by:  cnmsgngrp  19973  psgninv  19976  zrhpsgnmhm  19978
  Copyright terms: Public domain W3C validator