MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Structured version   Visualization version   GIF version

Theorem cnpart 14599
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 3124 . . . . . 6 (-(i · 𝐴) ∉ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+)
2 simpr 487 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) = 0)
3 0le0 11739 . . . . . . . 8 0 ≤ 0
42, 3eqbrtrdi 5105 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) ≤ 0)
54biantrurd 535 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∉ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
61, 5syl5bbr 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ -(i · 𝐴) ∈ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
76con1bid 358 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+) ↔ -(i · 𝐴) ∈ ℝ+))
8 ax-icn 10596 . . . . . . . . . . . 12 i ∈ ℂ
9 mulcl 10621 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
108, 9mpan 688 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
11 reim0b 14478 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
1210, 11syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
13 imre 14467 . . . . . . . . . . . . 13 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1410, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
15 ine0 11075 . . . . . . . . . . . . . . . . 17 i ≠ 0
16 divrec2 11315 . . . . . . . . . . . . . . . . 17 (((i · 𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
178, 15, 16mp3an23 1449 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
1810, 17syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
19 irec 13565 . . . . . . . . . . . . . . . 16 (1 / i) = -i
2019oveq1i 7166 . . . . . . . . . . . . . . 15 ((1 / i) · (i · 𝐴)) = (-i · (i · 𝐴))
2118, 20syl6eq 2872 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = (-i · (i · 𝐴)))
22 divcan3 11324 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴)
238, 15, 22mp3an23 1449 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴)
2421, 23eqtr3d 2858 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2524fveq2d 6674 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
2614, 25eqtrd 2856 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
2726eqeq1d 2823 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘(i · 𝐴)) = 0 ↔ (ℜ‘𝐴) = 0))
2812, 27bitrd 281 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
2928biimpar 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
3029adantlr 713 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
31 mulne0 11282 . . . . . . . . 9 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (i · 𝐴) ≠ 0)
328, 15, 31mpanl12 700 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · 𝐴) ≠ 0)
3332adantr 483 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ≠ 0)
34 rpneg 12422 . . . . . . 7 (((i · 𝐴) ∈ ℝ ∧ (i · 𝐴) ≠ 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3530, 33, 34syl2anc 586 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3635con2bid 357 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+))
37 df-nel 3124 . . . . 5 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
3836, 37syl6bbr 291 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
393, 2breqtrrid 5104 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → 0 ≤ (ℜ‘𝐴))
4039biantrurd 535 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∉ ℝ+ ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
417, 38, 403bitrrd 308 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
4228adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
4342necon3bbid 3053 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) ≠ 0))
4443biimpar 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ)
45 rpre 12398 . . . . . . . 8 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
4644, 45nsyl 142 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ+)
4746, 37sylibr 236 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∉ ℝ+)
4847biantrud 534 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
49 simpr 487 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
5049biantrud 534 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
51 0re 10643 . . . . . . . 8 0 ∈ ℝ
52 recl 14469 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
53 ltlen 10741 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
54 ltnle 10720 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5553, 54bitr3d 283 . . . . . . . 8 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5651, 52, 55sylancr 589 . . . . . . 7 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5756ad2antrr 724 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5850, 57bitrd 281 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5948, 58bitr3d 283 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (ℜ‘𝐴) ≤ 0))
60 renegcl 10949 . . . . . . . . . 10 (-(i · 𝐴) ∈ ℝ → --(i · 𝐴) ∈ ℝ)
6110negnegd 10988 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → --(i · 𝐴) = (i · 𝐴))
6261eleq1d 2897 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6362ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6460, 63syl5ib 246 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (-(i · 𝐴) ∈ ℝ → (i · 𝐴) ∈ ℝ))
6544, 64mtod 200 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ)
66 rpre 12398 . . . . . . . 8 (-(i · 𝐴) ∈ ℝ+ → -(i · 𝐴) ∈ ℝ)
6765, 66nsyl 142 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ+)
6867, 1sylibr 236 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → -(i · 𝐴) ∉ ℝ+)
6968biantrud 534 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≤ 0 ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7069notbid 320 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (¬ (ℜ‘𝐴) ≤ 0 ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7159, 70bitrd 281 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7241, 71pm2.61dane 3104 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
73 reneg 14484 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7473breq2d 5078 . . . . . 6 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ 0 ≤ -(ℜ‘𝐴)))
7552le0neg1d 11211 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴)))
7674, 75bitr4d 284 . . . . 5 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ (ℜ‘𝐴) ≤ 0))
77 mulneg2 11077 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
788, 77mpan 688 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
79 neleq1 3128 . . . . . 6 ((i · -𝐴) = -(i · 𝐴) → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8078, 79syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8176, 80anbi12d 632 . . . 4 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8281notbid 320 . . 3 (𝐴 ∈ ℂ → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8382adantr 483 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8472, 83bitr4d 284 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wnel 3123   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   · cmul 10542   < clt 10675  cle 10676  -cneg 10871   / cdiv 11297  +crp 12390  cre 14456  cim 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-cj 14458  df-re 14459  df-im 14460
This theorem is referenced by:  sqrmo  14611
  Copyright terms: Public domain W3C validator