Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem4preN Structured version   Visualization version   GIF version

Theorem dihmeetlem4preN 38457
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem4.b 𝐵 = (Base‘𝐾)
dihmeetlem4.l = (le‘𝐾)
dihmeetlem4.m = (meet‘𝐾)
dihmeetlem4.a 𝐴 = (Atoms‘𝐾)
dihmeetlem4.h 𝐻 = (LHyp‘𝐾)
dihmeetlem4.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem4.z 0 = (0g𝑈)
dihmeetlem4.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihmeetlem4.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem4.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem4.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem4preN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑔,,𝐻   𝐵,   𝑔,𝐾,   𝑄,𝑔   𝑇,𝑔,   𝑔,𝑊,   𝑃,𝑔
Allowed substitution hints:   𝐴()   𝐵(𝑔)   𝑃()   𝑄()   𝑅(𝑔,)   𝑈(𝑔,)   𝐸(𝑔,)   𝐺(𝑔,)   𝐼(𝑔,)   ()   (𝑔,)   𝑂(𝑔,)   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem dihmeetlem4preN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem4.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dihmeetlem4.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 38430 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑄))
4 relin1 5685 . . . 4 (Rel (𝐼𝑄) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
653ad2ant1 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
71, 2dihvalrel 38430 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(0.‘𝐾)))
8 eqid 2821 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
9 dihmeetlem4.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihmeetlem4.z . . . . . 6 0 = (0g𝑈)
118, 1, 2, 9, 10dih0 38431 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
1211releqd 5653 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Rel (𝐼‘(0.‘𝐾)) ↔ Rel { 0 }))
137, 12mpbid 234 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel { 0 })
14133ad2ant1 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel { 0 })
15 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
16 elin 4169 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
17 dihmeetlem4.l . . . . . . . . . 10 = (le‘𝐾)
18 dihmeetlem4.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
19 dihmeetlem4.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
20 dihmeetlem4.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
21 dihmeetlem4.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
22 dihmeetlem4.g . . . . . . . . . 10 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
23 vex 3497 . . . . . . . . . 10 𝑓 ∈ V
24 vex 3497 . . . . . . . . . 10 𝑠 ∈ V
2517, 18, 1, 19, 20, 21, 2, 22, 23, 24dihopelvalcqat 38397 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
26253adant2 1127 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
27 simp1 1132 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp1l 1193 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ HL)
2928hllatd 36515 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ Lat)
30 simp2l 1195 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑋𝐵)
31 simp1r 1194 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐻)
32 dihmeetlem4.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
3332, 1lhpbase 37149 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
3431, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐵)
35 dihmeetlem4.m . . . . . . . . . . 11 = (meet‘𝐾)
3632, 35latmcl 17662 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3729, 30, 34, 36syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
3832, 17, 35latmle2 17687 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
3929, 30, 34, 38syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) 𝑊)
40 dihmeetlem4.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
41 dihmeetlem4.o . . . . . . . . . 10 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
4232, 17, 1, 20, 40, 41, 2dihopelvalbN 38389 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4327, 37, 39, 42syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4426, 43anbi12d 632 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))))
45 simprll 777 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = (𝑠𝐺))
46 simprrr 780 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑠 = 𝑂)
4746fveq1d 6672 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑠𝐺) = (𝑂𝐺))
48 simpl1 1187 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4917, 18, 1, 19lhpocnel2 37170 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5048, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
51 simpl3 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5217, 18, 1, 20, 22ltrniotacl 37730 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5348, 50, 51, 52syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝐺𝑇)
5441, 32tendo02 37938 . . . . . . . . . . 11 (𝐺𝑇 → (𝑂𝐺) = ( I ↾ 𝐵))
5553, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑂𝐺) = ( I ↾ 𝐵))
5645, 47, 553eqtrd 2860 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = ( I ↾ 𝐵))
5756, 46jca 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
58 simpl1 1187 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5958, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
60 simpl3 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6158, 59, 60, 52syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐺𝑇)
6261, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑂𝐺) = ( I ↾ 𝐵))
63 simprr 771 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 = 𝑂)
6463fveq1d 6672 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑠𝐺) = (𝑂𝐺))
65 simprl 769 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = ( I ↾ 𝐵))
6662, 64, 653eqtr4rd 2867 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = (𝑠𝐺))
6732, 1, 20, 21, 41tendo0cl 37941 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
6858, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑂𝐸)
6963, 68eqeltrd 2913 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠𝐸)
7032, 1, 20idltrn 37301 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
7158, 70syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ( I ↾ 𝐵) ∈ 𝑇)
7265, 71eqeltrd 2913 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓𝑇)
7365fveq2d 6674 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (𝑅‘( I ↾ 𝐵)))
7432, 8, 1, 40trlid0 37327 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7558, 74syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7673, 75eqtrd 2856 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (0.‘𝐾))
77 simpl1l 1220 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ HL)
78 hlatl 36511 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
7977, 78syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ AtLat)
8037adantr 483 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑋 𝑊) ∈ 𝐵)
8132, 17, 8atl0le 36455 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ (𝑋 𝑊) ∈ 𝐵) → (0.‘𝐾) (𝑋 𝑊))
8279, 80, 81syl2anc 586 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (0.‘𝐾) (𝑋 𝑊))
8376, 82eqbrtrd 5088 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) (𝑋 𝑊))
8472, 83, 63jca31 517 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))
8566, 69, 84jca31 517 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
8657, 85impbida 799 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
8744, 86bitrd 281 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
88 opex 5356 . . . . . . . 8 𝑓, 𝑠⟩ ∈ V
8988elsn 4582 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩} ↔ ⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
9023, 24opth 5368 . . . . . . 7 (⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
9189, 90bitr2i 278 . . . . . 6 ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩})
9287, 91syl6bb 289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9332, 1, 20, 9, 10, 41dvh0g 38262 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
94933ad2ant1 1129 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
9594sneqd 4579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → { 0 } = {⟨( I ↾ 𝐵), 𝑂⟩})
9695eleq2d 2898 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ { 0 } ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9792, 96bitr4d 284 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9816, 97syl5bb 285 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9998eqrelrdv2 5668 . 2 (((Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ∧ Rel { 0 }) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
1006, 14, 15, 99syl21anc 835 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3935  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146   I cid 5459  cres 5557  Rel wrel 5560  cfv 6355  crio 7113  (class class class)co 7156  Basecbs 16483  lecple 16572  occoc 16573  0gc0g 16713  meetcmee 17555  0.cp0 17647  Latclat 17655  Atomscatm 36414  AtLatcal 36415  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309  TEndoctendo 37903  DVecHcdvh 38229  DIsoHcdih 38379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906  df-edring 37908  df-disoa 38180  df-dvech 38230  df-dib 38290  df-dic 38324  df-dih 38380
This theorem is referenced by:  dihmeetlem4N  38458
  Copyright terms: Public domain W3C validator