Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   GIF version

Theorem efgsrel 18063
 Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgsrel (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsrel
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18059 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(#‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))))
87simp1bi 1074 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
9 eldifsn 4292 . . . . 5 (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊𝐹 ≠ ∅))
10 lennncl 13259 . . . . 5 ((𝐹 ∈ Word 𝑊𝐹 ≠ ∅) → (#‘𝐹) ∈ ℕ)
119, 10sylbi 207 . . . 4 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → (#‘𝐹) ∈ ℕ)
12 fzo0end 12498 . . . 4 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
138, 11, 123syl 18 . . 3 (𝐹 ∈ dom 𝑆 → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
14 nnm1nn0 11279 . . . . 5 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ ℕ0)
158, 11, 143syl 18 . . . 4 (𝐹 ∈ dom 𝑆 → ((#‘𝐹) − 1) ∈ ℕ0)
16 eleq1 2692 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^(#‘𝐹)) ↔ 0 ∈ (0..^(#‘𝐹))))
17 fveq2 6150 . . . . . . . 8 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
1817breq2d 4630 . . . . . . 7 (𝑎 = 0 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘0)))
1916, 18imbi12d 334 . . . . . 6 (𝑎 = 0 → ((𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (0 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘0))))
2019imbi2d 330 . . . . 5 (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘0)))))
21 eleq1 2692 . . . . . . 7 (𝑎 = 𝑖 → (𝑎 ∈ (0..^(#‘𝐹)) ↔ 𝑖 ∈ (0..^(#‘𝐹))))
22 fveq2 6150 . . . . . . . 8 (𝑎 = 𝑖 → (𝐹𝑎) = (𝐹𝑖))
2322breq2d 4630 . . . . . . 7 (𝑎 = 𝑖 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹𝑖)))
2421, 23imbi12d 334 . . . . . 6 (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
2524imbi2d 330 . . . . 5 (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖)))))
26 eleq1 2692 . . . . . . 7 (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(#‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(#‘𝐹))))
27 fveq2 6150 . . . . . . . 8 (𝑎 = (𝑖 + 1) → (𝐹𝑎) = (𝐹‘(𝑖 + 1)))
2827breq2d 4630 . . . . . . 7 (𝑎 = (𝑖 + 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘(𝑖 + 1))))
2926, 28imbi12d 334 . . . . . 6 (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
3029imbi2d 330 . . . . 5 (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
31 eleq1 2692 . . . . . . 7 (𝑎 = ((#‘𝐹) − 1) → (𝑎 ∈ (0..^(#‘𝐹)) ↔ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))))
32 fveq2 6150 . . . . . . . 8 (𝑎 = ((#‘𝐹) − 1) → (𝐹𝑎) = (𝐹‘((#‘𝐹) − 1)))
3332breq2d 4630 . . . . . . 7 (𝑎 = ((#‘𝐹) − 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘((#‘𝐹) − 1))))
3431, 33imbi12d 334 . . . . . 6 (𝑎 = ((#‘𝐹) − 1) → ((𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘((#‘𝐹) − 1)))))
3534imbi2d 330 . . . . 5 (𝑎 = ((#‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘((#‘𝐹) − 1))))))
361, 2efger 18047 . . . . . . . 8 Er 𝑊
3736a1i 11 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(#‘𝐹))) → Er 𝑊)
38 eldifi 3715 . . . . . . . . 9 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊)
39 wrdf 13244 . . . . . . . . 9 (𝐹 ∈ Word 𝑊𝐹:(0..^(#‘𝐹))⟶𝑊)
408, 38, 393syl 18 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹:(0..^(#‘𝐹))⟶𝑊)
4140ffvelrnda 6316 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(#‘𝐹))) → (𝐹‘0) ∈ 𝑊)
4237, 41erref 7708 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(#‘𝐹))) → (𝐹‘0) (𝐹‘0))
4342ex 450 . . . . 5 (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘0)))
44 elnn0uz 11669 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ (ℤ‘0))
45 peano2fzor 12513 . . . . . . . . . . . 12 ((𝑖 ∈ (ℤ‘0) ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → 𝑖 ∈ (0..^(#‘𝐹)))
4644, 45sylanb 489 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → 𝑖 ∈ (0..^(#‘𝐹)))
47463adant1 1077 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → 𝑖 ∈ (0..^(#‘𝐹)))
48473expia 1264 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → 𝑖 ∈ (0..^(#‘𝐹))))
4948imim1d 82 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
50403ad2ant1 1080 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → 𝐹:(0..^(#‘𝐹))⟶𝑊)
5150, 47ffvelrnd 6317 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝐹𝑖) ∈ 𝑊)
52 nn0p1nn 11277 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ)
53523ad2ant2 1081 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝑖 + 1) ∈ ℕ)
54 nnuz 11667 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
5553, 54syl6eleq 2714 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝑖 + 1) ∈ (ℤ‘1))
56 elfzolt2b 12419 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(#‘𝐹)))
57563ad2ant3 1082 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(#‘𝐹)))
58 elfzo3 12424 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (1..^(#‘𝐹)) ↔ ((𝑖 + 1) ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(#‘𝐹))))
5955, 57, 58sylanbrc 697 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝑖 + 1) ∈ (1..^(#‘𝐹)))
607simp3bi 1076 . . . . . . . . . . . . . . 15 (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(#‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
61603ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → ∀𝑎 ∈ (1..^(#‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
62 oveq1 6612 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑖 + 1) → (𝑎 − 1) = ((𝑖 + 1) − 1))
6362fveq2d 6154 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1)))
6463fveq2d 6154 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
6564rneqd 5317 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
6627, 65eleq12d 2698 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 + 1) → ((𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
6766rspcv 3296 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ (1..^(#‘𝐹)) → (∀𝑎 ∈ (1..^(#‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
6859, 61, 67sylc 65 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
69 nn0cn 11247 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
70693ad2ant2 1081 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → 𝑖 ∈ ℂ)
71 ax-1cn 9939 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
72 pncan 10232 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑖 + 1) − 1) = 𝑖)
7370, 71, 72sylancl 693 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → ((𝑖 + 1) − 1) = 𝑖)
7473fveq2d 6154 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝐹‘((𝑖 + 1) − 1)) = (𝐹𝑖))
7574fveq2d 6154 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹𝑖)))
7675rneqd 5317 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹𝑖)))
7768, 76eleqtrd 2706 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖)))
781, 2, 3, 4efgi2 18054 . . . . . . . . . . . 12 (((𝐹𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7951, 77, 78syl2anc 692 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
8036a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → Er 𝑊)
8180ertr 7703 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → (((𝐹‘0) (𝐹𝑖) ∧ (𝐹𝑖) (𝐹‘(𝑖 + 1))) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
8279, 81mpan2d 709 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(#‘𝐹))) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
83823expia 1264 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8483a2d 29 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8549, 84syld 47 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8685expcom 451 . . . . . 6 (𝑖 ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8786a2d 29 . . . . 5 (𝑖 ∈ ℕ0 → ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8820, 25, 30, 35, 43, 87nn0ind 11416 . . . 4 (((#‘𝐹) − 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘((#‘𝐹) − 1)))))
8915, 88mpcom 38 . . 3 (𝐹 ∈ dom 𝑆 → (((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)) → (𝐹‘0) (𝐹‘((#‘𝐹) − 1))))
9013, 89mpd 15 . 2 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝐹‘((#‘𝐹) − 1)))
911, 2, 3, 4, 5, 6efgsval 18060 . 2 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((#‘𝐹) − 1)))
9290, 91breqtrrd 4646 1 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992   ≠ wne 2796  ∀wral 2912  {crab 2916   ∖ cdif 3557  ∅c0 3896  {csn 4153  ⟨cop 4159  ⟨cotp 4161  ∪ ciun 4490   class class class wbr 4618   ↦ cmpt 4678   I cid 4989   × cxp 5077  dom cdm 5079  ran crn 5080  ⟶wf 5846  ‘cfv 5850  (class class class)co 6605   ↦ cmpt2 6607  1𝑜c1o 7499  2𝑜c2o 7500   Er wer 7685  ℂcc 9879  0cc0 9881  1c1 9882   + caddc 9884   − cmin 10211  ℕcn 10965  ℕ0cn0 11237  ℤ≥cuz 11631  ...cfz 12265  ..^cfzo 12403  #chash 13054  Word cword 13225   splice csplice 13230  ⟨“cs2 13518   ~FG cefg 18035 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-ec 7690  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-concat 13235  df-s1 13236  df-substr 13237  df-splice 13238  df-s2 13525  df-efg 18038 This theorem is referenced by:  efgredeu  18081  efgred2  18082
 Copyright terms: Public domain W3C validator