MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 20296
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐶 = (Base‘𝑆)
evlseu.a 𝐴 = (algSc‘𝑃)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (𝜑𝐼 ∈ V)
evlseu.r (𝜑𝑅 ∈ CRing)
evlseu.s (𝜑𝑆 ∈ CRing)
evlseu.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
evlseu (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼   𝑃,𝑚   𝜑,𝑚   𝑆,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐶(𝑚)   𝑅(𝑚)

Proof of Theorem evlseu
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2821 . . . 4 (Base‘𝑃) = (Base‘𝑃)
3 evlseu.c . . . 4 𝐶 = (Base‘𝑆)
4 eqid 2821 . . . 4 {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} = {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin}
5 eqid 2821 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
6 eqid 2821 . . . 4 (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆))
7 eqid 2821 . . . 4 (.r𝑆) = (.r𝑆)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2821 . . . 4 (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺))))))
10 evlseu.i . . . 4 (𝜑𝐼 ∈ V)
11 evlseu.r . . . 4 (𝜑𝑅 ∈ CRing)
12 evlseu.s . . . 4 (𝜑𝑆 ∈ CRing)
13 evlseu.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (𝜑𝐺:𝐼𝐶)
15 evlseu.a . . . 4 𝐴 = (algSc‘𝑃)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 20295 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5728 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝐴) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2823 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝐴) = 𝐹 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5728 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝑉) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2823 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝑉) = 𝐺 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 632 . . . . 5 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3623 . . . 4 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
23223impb 1111 . . 3 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
2416, 23syl 17 . 2 (𝜑 → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
25 eqid 2821 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
26 crngring 19308 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 20277 . . . . . . . . 9 (𝜑𝐴:(Base‘𝑅)⟶(Base‘𝑃))
2928ffund 6518 . . . . . . . 8 (𝜑 → Fun 𝐴)
30 funcoeqres 6645 . . . . . . . 8 ((Fun 𝐴 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
3129, 30sylan 582 . . . . . . 7 ((𝜑 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
321, 8, 2, 10, 27mvrf2 20272 . . . . . . . . 9 (𝜑𝑉:𝐼⟶(Base‘𝑃))
3332ffund 6518 . . . . . . . 8 (𝜑 → Fun 𝑉)
34 funcoeqres 6645 . . . . . . . 8 ((Fun 𝑉 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3533, 34sylan 582 . . . . . . 7 ((𝜑 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3631, 35anim12dan 620 . . . . . 6 ((𝜑 ∧ ((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)))
3736ex 415 . . . . 5 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉))))
38 resundi 5867 . . . . . 6 (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉))
39 uneq12 4134 . . . . . 6 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4038, 39syl5eq 2868 . . . . 5 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4137, 40syl6 35 . . . 4 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
4241ralrimivw 3183 . . 3 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
43 eqtr3 2843 . . . . . 6 (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
44 eqid 2821 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 20194 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2821 . . . . . . . . . . . . . 14 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 20204 . . . . . . . . . . . . 13 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅)))
4847frnd 6521 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
49 eqid 2821 . . . . . . . . . . . . 13 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
50 eqid 2821 . . . . . . . . . . . . 13 (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘(𝐼 mPwSer 𝑅))
51 eqid 2821 . . . . . . . . . . . . 13 (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅))) = (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 20127 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
5345, 48, 52syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 20251 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑃))
5544, 1, 2, 10, 27mplsubrg 20220 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 20211 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
5756subsubrg2 19562 . . . . . . . . . . . . . . 15 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5958fveq2d 6674 . . . . . . . . . . . . 13 (𝜑 → (mrCls‘(SubRing‘𝑃)) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))))
6050, 56ressascl 20125 . . . . . . . . . . . . . . . . 17 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6261, 15syl6reqr 2875 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (algSc‘(𝐼 mPwSer 𝑅)))
6362rneqd 5808 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐴 = ran (algSc‘(𝐼 mPwSer 𝑅)))
6463uneq1d 4138 . . . . . . . . . . . . 13 (𝜑 → (ran 𝐴 ∪ ran 𝑉) = (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉))
6559, 64fveq12d 6677 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) = ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
66 assaring 20093 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 19559 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (𝜑 → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6928frnd 6521 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐴 ⊆ (Base‘𝑃))
7063, 69eqsstrrd 4006 . . . . . . . . . . . . . 14 (𝜑 → ran (algSc‘(𝐼 mPwSer 𝑅)) ⊆ (Base‘𝑃))
7132frnd 6521 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
7270, 71unssd 4162 . . . . . . . . . . . . 13 (𝜑 → (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃))
73 eqid 2821 . . . . . . . . . . . . . 14 (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
7451, 73submrc 16899 . . . . . . . . . . . . 13 (((SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))) ∧ (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7568, 55, 72, 74syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7665, 75eqtr2d 2857 . . . . . . . . . . 11 (𝜑 → ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7753, 54, 763eqtr3d 2864 . . . . . . . . . 10 (𝜑 → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7877ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
791mplring 20232 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
8010, 27, 79syl2anc 586 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Ring)
812subrgmre 19559 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8280, 81syl 17 . . . . . . . . . . 11 (𝜑 → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8382ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
84 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛))
85 rhmeql 19565 . . . . . . . . . . 11 ((𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
8685ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
87 eqid 2821 . . . . . . . . . . 11 (mrCls‘(SubRing‘𝑃)) = (mrCls‘(SubRing‘𝑃))
8887mrcsscl 16891 . . . . . . . . . 10 (((SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) ∧ dom (𝑚𝑛) ∈ (SubRing‘𝑃)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8983, 84, 86, 88syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
9078, 89eqsstrd 4005 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) ⊆ dom (𝑚𝑛))
9190ex 415 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) → (Base‘𝑃) ⊆ dom (𝑚𝑛)))
92 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 ∈ (𝑃 RingHom 𝑆))
932, 3rhmf 19478 . . . . . . . . 9 (𝑚 ∈ (𝑃 RingHom 𝑆) → 𝑚:(Base‘𝑃)⟶𝐶)
94 ffn 6514 . . . . . . . . 9 (𝑚:(Base‘𝑃)⟶𝐶𝑚 Fn (Base‘𝑃))
9592, 93, 943syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 Fn (Base‘𝑃))
96 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 ∈ (𝑃 RingHom 𝑆))
972, 3rhmf 19478 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) → 𝑛:(Base‘𝑃)⟶𝐶)
98 ffn 6514 . . . . . . . . 9 (𝑛:(Base‘𝑃)⟶𝐶𝑛 Fn (Base‘𝑃))
9996, 97, 983syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 Fn (Base‘𝑃))
10069adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝐴 ⊆ (Base‘𝑃))
10171adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝑉 ⊆ (Base‘𝑃))
102100, 101unssd 4162 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃))
103 fnreseql 6818 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
10495, 99, 102, 103syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
105 fneqeql2 6817 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃)) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10695, 99, 105syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10791, 104, 1063imtr4d 296 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) → 𝑚 = 𝑛))
10843, 107syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
109108ralrimivva 3191 . . . 4 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
110 reseq1 5847 . . . . . 6 (𝑚 = 𝑛 → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
111110eqeq1d 2823 . . . . 5 (𝑚 = 𝑛 → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
112111rmo4 3721 . . . 4 (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
113109, 112sylibr 236 . . 3 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
114 rmoim 3731 . . 3 (∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11542, 113, 114sylc 65 . 2 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
116 reu5 3430 . 2 (∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ∧ ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11724, 115, 116sylanbrc 585 1 (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  ∃*wrmo 3141  {crab 3142  Vcvv 3494  cun 3934  cin 3935  wss 3936  𝒫 cpw 4539  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  m cmap 8406  Fincfn 8509  cn 11638  0cn0 11898  Basecbs 16483  .rcmulr 16566   Σg cgsu 16714  Moorecmre 16853  mrClscmrc 16854  .gcmg 18224  mulGrpcmgp 19239  Ringcrg 19297  CRingccrg 19298   RingHom crh 19464  SubRingcsubrg 19531  AssAlgcasa 20082  AlgSpancasp 20083  algSccascl 20084   mPwSer cmps 20131   mVar cmvr 20132   mPoly cmpl 20133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138
This theorem is referenced by:  evlsval2  20300
  Copyright terms: Public domain W3C validator