MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem2 Structured version   Visualization version   GIF version

Theorem ftc1lem2 23703
Description: Lemma for ftc1 23709. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1lem2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem2
StepHypRef Expression
1 fvex 6158 . . . 4 (𝐹𝑡) ∈ V
21a1i 11 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹𝑡) ∈ V)
3 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
54rexrd 10033 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
6 ftc1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
7 elicc2 12180 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
86, 3, 7syl2anc 692 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
98biimpa 501 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
109simp3d 1073 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
11 iooss2 12153 . . . . . 6 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
125, 10, 11syl2anc 692 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
13 ftc1.s . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
1413adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷)
1512, 14sstrd 3593 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷)
16 ioombl 23240 . . . . 5 (𝐴(,)𝑥) ∈ dom vol
1716a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
181a1i 11 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
19 ftc1a.f . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
2019feqmptd 6206 . . . . . 6 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
21 ftc1.i . . . . . 6 (𝜑𝐹 ∈ 𝐿1)
2220, 21eqeltrrd 2699 . . . . 5 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
2322adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
2415, 17, 18, 23iblss 23477 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹𝑡)) ∈ 𝐿1)
252, 24itgcl 23456 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 ∈ ℂ)
26 ftc1.g . 2 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2725, 26fmptd 6340 1 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555   class class class wbr 4613  cmpt 4673  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  *cxr 10017  cle 10019  (,)cioo 12117  [,]cicc 12120  volcvol 23139  𝐿1cibl 23292  citg 23293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-xmet 19658  df-met 19659  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-ibl 23297  df-itg 23298
This theorem is referenced by:  ftc1a  23704  ftc1lem5  23707  ftc1lem6  23708  ftc1  23709  ftc1cn  23710  ftc1cnnc  33116  ftc1anc  33125
  Copyright terms: Public domain W3C validator