Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccelpart Structured version   Visualization version   GIF version

Theorem iccelpart 41871
Description: An element of any partitioned half opened interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.)
Assertion
Ref Expression
iccelpart (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
Distinct variable groups:   𝑖,𝑀,𝑝   𝑖,𝑋,𝑝

Proof of Theorem iccelpart
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6344 . . 3 (𝑥 = 1 → (RePart‘𝑥) = (RePart‘1))
2 fveq2 6344 . . . . . 6 (𝑥 = 1 → (𝑝𝑥) = (𝑝‘1))
32oveq2d 6821 . . . . 5 (𝑥 = 1 → ((𝑝‘0)[,)(𝑝𝑥)) = ((𝑝‘0)[,)(𝑝‘1)))
43eleq2d 2817 . . . 4 (𝑥 = 1 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1))))
5 oveq2 6813 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = (0..^1))
6 fzo01 12736 . . . . . 6 (0..^1) = {0}
75, 6syl6eq 2802 . . . . 5 (𝑥 = 1 → (0..^𝑥) = {0})
87rexeqdv 3276 . . . 4 (𝑥 = 1 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
94, 8imbi12d 333 . . 3 (𝑥 = 1 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
101, 9raleqbidv 3283 . 2 (𝑥 = 1 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘1)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
11 fveq2 6344 . . 3 (𝑥 = 𝑦 → (RePart‘𝑥) = (RePart‘𝑦))
12 fveq2 6344 . . . . . 6 (𝑥 = 𝑦 → (𝑝𝑥) = (𝑝𝑦))
1312oveq2d 6821 . . . . 5 (𝑥 = 𝑦 → ((𝑝‘0)[,)(𝑝𝑥)) = ((𝑝‘0)[,)(𝑝𝑦)))
1413eleq2d 2817 . . . 4 (𝑥 = 𝑦 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))))
15 oveq2 6813 . . . . 5 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1615rexeqdv 3276 . . . 4 (𝑥 = 𝑦 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
1714, 16imbi12d 333 . . 3 (𝑥 = 𝑦 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
1811, 17raleqbidv 3283 . 2 (𝑥 = 𝑦 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
19 fveq2 6344 . . 3 (𝑥 = (𝑦 + 1) → (RePart‘𝑥) = (RePart‘(𝑦 + 1)))
20 fveq2 6344 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑝𝑥) = (𝑝‘(𝑦 + 1)))
2120oveq2d 6821 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑝‘0)[,)(𝑝𝑥)) = ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))
2221eleq2d 2817 . . . 4 (𝑥 = (𝑦 + 1) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1)))))
23 oveq2 6813 . . . . 5 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
2423rexeqdv 3276 . . . 4 (𝑥 = (𝑦 + 1) → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
2522, 24imbi12d 333 . . 3 (𝑥 = (𝑦 + 1) → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
2619, 25raleqbidv 3283 . 2 (𝑥 = (𝑦 + 1) → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
27 fveq2 6344 . . 3 (𝑥 = 𝑀 → (RePart‘𝑥) = (RePart‘𝑀))
28 fveq2 6344 . . . . . 6 (𝑥 = 𝑀 → (𝑝𝑥) = (𝑝𝑀))
2928oveq2d 6821 . . . . 5 (𝑥 = 𝑀 → ((𝑝‘0)[,)(𝑝𝑥)) = ((𝑝‘0)[,)(𝑝𝑀)))
3029eleq2d 2817 . . . 4 (𝑥 = 𝑀 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀))))
31 oveq2 6813 . . . . 5 (𝑥 = 𝑀 → (0..^𝑥) = (0..^𝑀))
3231rexeqdv 3276 . . . 4 (𝑥 = 𝑀 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
3330, 32imbi12d 333 . . 3 (𝑥 = 𝑀 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
3427, 33raleqbidv 3283 . 2 (𝑥 = 𝑀 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
35 0nn0 11491 . . . . 5 0 ∈ ℕ0
36 fveq2 6344 . . . . . . . 8 (𝑖 = 0 → (𝑝𝑖) = (𝑝‘0))
37 oveq1 6812 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
38 0p1e1 11316 . . . . . . . . . 10 (0 + 1) = 1
3937, 38syl6eq 2802 . . . . . . . . 9 (𝑖 = 0 → (𝑖 + 1) = 1)
4039fveq2d 6348 . . . . . . . 8 (𝑖 = 0 → (𝑝‘(𝑖 + 1)) = (𝑝‘1))
4136, 40oveq12d 6823 . . . . . . 7 (𝑖 = 0 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑝‘0)[,)(𝑝‘1)))
4241eleq2d 2817 . . . . . 6 (𝑖 = 0 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1))))
4342rexsng 4355 . . . . 5 (0 ∈ ℕ0 → (∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1))))
4435, 43ax-mp 5 . . . 4 (∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)))
4544biimpri 218 . . 3 (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
4645rgenw 3054 . 2 𝑝 ∈ (RePart‘1)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
47 nfv 1984 . . . . 5 𝑝 𝑦 ∈ ℕ
48 nfra1 3071 . . . . 5 𝑝𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
4947, 48nfan 1969 . . . 4 𝑝(𝑦 ∈ ℕ ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
50 nnnn0 11483 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
51 fzonn0p1 12731 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ (0..^(𝑦 + 1)))
5250, 51syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ (0..^(𝑦 + 1)))
5352ad2antrr 764 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → 𝑦 ∈ (0..^(𝑦 + 1)))
54 fveq2 6344 . . . . . . . . . . 11 (𝑖 = 𝑦 → (𝑝𝑖) = (𝑝𝑦))
55 oveq1 6812 . . . . . . . . . . . 12 (𝑖 = 𝑦 → (𝑖 + 1) = (𝑦 + 1))
5655fveq2d 6348 . . . . . . . . . . 11 (𝑖 = 𝑦 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑦 + 1)))
5754, 56oveq12d 6823 . . . . . . . . . 10 (𝑖 = 𝑦 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1))))
5857eleq2d 2817 . . . . . . . . 9 (𝑖 = 𝑦 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1)))))
5958adantl 473 . . . . . . . 8 ((((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) ∧ 𝑖 = 𝑦) → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1)))))
60 peano2nn 11216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
6160adantr 472 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑦 + 1) ∈ ℕ)
62 simpr 479 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑝 ∈ (RePart‘(𝑦 + 1)))
6360nnnn0d 11535 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ0)
64 0elfz 12622 . . . . . . . . . . . . . . . . 17 ((𝑦 + 1) ∈ ℕ0 → 0 ∈ (0...(𝑦 + 1)))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 0 ∈ (0...(𝑦 + 1)))
6665adantr 472 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 0 ∈ (0...(𝑦 + 1)))
6761, 62, 66iccpartxr 41857 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘0) ∈ ℝ*)
68 nn0fz0 12623 . . . . . . . . . . . . . . . . 17 ((𝑦 + 1) ∈ ℕ0 ↔ (𝑦 + 1) ∈ (0...(𝑦 + 1)))
6963, 68sylib 208 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ (0...(𝑦 + 1)))
7069adantr 472 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑦 + 1) ∈ (0...(𝑦 + 1)))
7161, 62, 70iccpartxr 41857 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘(𝑦 + 1)) ∈ ℝ*)
7267, 71jca 555 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*))
7372adantlr 753 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*))
74 elico1 12403 . . . . . . . . . . . 12 (((𝑝‘0) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
7573, 74syl 17 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
76 simp1 1130 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 ∈ ℝ*)
7776adantl 473 . . . . . . . . . . . . . . 15 (((𝑝𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈ ℝ*)
78 simpl 474 . . . . . . . . . . . . . . 15 (((𝑝𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑝𝑦) ≤ 𝑋)
79 simpr3 1235 . . . . . . . . . . . . . . 15 (((𝑝𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 < (𝑝‘(𝑦 + 1)))
8077, 78, 793jca 1122 . . . . . . . . . . . . . 14 (((𝑝𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))))
8180ex 449 . . . . . . . . . . . . 13 ((𝑝𝑦) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
8281adantl 473 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
8382adantr 472 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
8475, 83sylbid 230 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
8584impr 650 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))))
86 nn0fz0 12623 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0𝑦 ∈ (0...𝑦))
8750, 86sylib 208 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ (0...𝑦))
88 fzelp1 12578 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑦) → 𝑦 ∈ (0...(𝑦 + 1)))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ (0...(𝑦 + 1)))
9089adantr 472 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑦 ∈ (0...(𝑦 + 1)))
9161, 62, 90iccpartxr 41857 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝𝑦) ∈ ℝ*)
9291, 71jca 555 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*))
9392ad2ant2r 800 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → ((𝑝𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*))
94 elico1 12403 . . . . . . . . . 10 (((𝑝𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
9593, 94syl 17 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → (𝑋 ∈ ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
9685, 95mpbird 247 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → 𝑋 ∈ ((𝑝𝑦)[,)(𝑝‘(𝑦 + 1))))
9753, 59, 96rspcedvd 3448 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑝𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
9897exp43 641 . . . . . 6 (𝑦 ∈ ℕ → ((𝑝𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
9998adantr 472 . . . . 5 ((𝑦 ∈ ℕ ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝑝𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
100 iccpartres 41856 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦))
101 rspsbca 3652 . . . . . . . . . . . 12 (((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → [(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
102 vex 3335 . . . . . . . . . . . . . . 15 𝑝 ∈ V
103102resex 5593 . . . . . . . . . . . . . 14 (𝑝 ↾ (0...𝑦)) ∈ V
104 sbcimg 3610 . . . . . . . . . . . . . . 15 ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → [(𝑝 ↾ (0...𝑦)) / 𝑝]𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
105 sbcel2 4124 . . . . . . . . . . . . . . . . 17 ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) ↔ 𝑋(𝑝 ↾ (0...𝑦)) / 𝑝((𝑝‘0)[,)(𝑝𝑦)))
106 csbov12g 6844 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝((𝑝‘0)[,)(𝑝𝑦)) = ((𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘0)[,)(𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑦)))
107 csbfv12 6384 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘0) = ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝0)
108 csbvarg 4138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝𝑝 = (𝑝 ↾ (0...𝑦)))
109 csbconstg 3679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝0 = 0)
110108, 109fveq12d 6350 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝0) = ((𝑝 ↾ (0...𝑦))‘0))
111107, 110syl5eq 2798 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘0) = ((𝑝 ↾ (0...𝑦))‘0))
112 csbfv12 6384 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑦) = ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝𝑦)
113 csbconstg 3679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝𝑦 = 𝑦)
114108, 113fveq12d 6350 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦))
115112, 114syl5eq 2798 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦))
116111, 115oveq12d 6823 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘0)[,)(𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))
117106, 116eqtrd 2786 . . . . . . . . . . . . . . . . . 18 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝((𝑝‘0)[,)(𝑝𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))
118117eleq2d 2817 . . . . . . . . . . . . . . . . 17 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑋(𝑝 ↾ (0...𝑦)) / 𝑝((𝑝‘0)[,)(𝑝𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))))
119105, 118syl5bb 272 . . . . . . . . . . . . . . . 16 ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))))
120 sbcrex 3647 . . . . . . . . . . . . . . . . 17 ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)[(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
121 sbcel2 4124 . . . . . . . . . . . . . . . . . . 19 ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋(𝑝 ↾ (0...𝑦)) / 𝑝((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
122 csbov12g 6844 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑖)[,)(𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘(𝑖 + 1))))
123 csbfv12 6384 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑖) = ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝𝑖)
124 csbconstg 3679 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝𝑖 = 𝑖)
125108, 124fveq12d 6350 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝𝑖) = ((𝑝 ↾ (0...𝑦))‘𝑖))
126123, 125syl5eq 2798 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑖) = ((𝑝 ↾ (0...𝑦))‘𝑖))
127 csbfv12 6384 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘(𝑖 + 1)) = ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝(𝑖 + 1))
128 csbconstg 3679 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝(𝑖 + 1) = (𝑖 + 1))
129108, 128fveq12d 6350 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝𝑝(𝑝 ↾ (0...𝑦)) / 𝑝(𝑖 + 1)) = ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))
130127, 129syl5eq 2798 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘(𝑖 + 1)) = ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))
131126, 130oveq12d 6823 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ↾ (0...𝑦)) ∈ V → ((𝑝 ↾ (0...𝑦)) / 𝑝(𝑝𝑖)[,)(𝑝 ↾ (0...𝑦)) / 𝑝(𝑝‘(𝑖 + 1))) = (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))
132122, 131eqtrd 2786 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑝 ↾ (0...𝑦)) / 𝑝((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))
133132eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑋(𝑝 ↾ (0...𝑦)) / 𝑝((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))
134121, 133syl5bb 272 . . . . . . . . . . . . . . . . . 18 ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))
135134rexbidv 3182 . . . . . . . . . . . . . . . . 17 ((𝑝 ↾ (0...𝑦)) ∈ V → (∃𝑖 ∈ (0..^𝑦)[(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))
136120, 135syl5bb 272 . . . . . . . . . . . . . . . 16 ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))
137119, 136imbi12d 333 . . . . . . . . . . . . . . 15 ((𝑝 ↾ (0...𝑦)) ∈ V → (([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → [(𝑝 ↾ (0...𝑦)) / 𝑝]𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))))
138104, 137bitrd 268 . . . . . . . . . . . . . 14 ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))))
139103, 138ax-mp 5 . . . . . . . . . . . . 13 ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))
14072, 74syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
141140adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))))
14276adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈ ℝ*)
143 simpr2 1233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑝‘0) ≤ 𝑋)
144 xrltnle 10289 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ (𝑝𝑦) ∈ ℝ*) → (𝑋 < (𝑝𝑦) ↔ ¬ (𝑝𝑦) ≤ 𝑋))
14576, 91, 144syl2anr 496 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 < (𝑝𝑦) ↔ ¬ (𝑝𝑦) ≤ 𝑋))
146145exbiri 653 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋𝑋 < (𝑝𝑦))))
147146com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 < (𝑝𝑦))))
148147imp31 447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 < (𝑝𝑦))
149142, 143, 1483jca 1122 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝𝑦)))
15067, 91jca 555 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈ ℝ* ∧ (𝑝𝑦) ∈ ℝ*))
151150ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → ((𝑝‘0) ∈ ℝ* ∧ (𝑝𝑦) ∈ ℝ*))
152 elico1 12403 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝‘0) ∈ ℝ* ∧ (𝑝𝑦) ∈ ℝ*) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝𝑦))))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝𝑦))))
154149, 153mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)))
155154ex 449 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))))
156141, 155sylbid 230 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))))
157 0elfz 12622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ0 → 0 ∈ (0...𝑦))
15850, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 0 ∈ (0...𝑦))
159158adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 0 ∈ (0...𝑦))
160 fvres 6360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘0) = (𝑝‘0))
161159, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝 ↾ (0...𝑦))‘0) = (𝑝‘0))
162161eqcomd 2758 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘0) = ((𝑝 ↾ (0...𝑦))‘0))
16387adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑦 ∈ (0...𝑦))
164 fvres 6360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘𝑦) = (𝑝𝑦))
165163, 164syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝 ↾ (0...𝑦))‘𝑦) = (𝑝𝑦))
166165eqcomd 2758 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦))
167162, 166oveq12d 6823 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0)[,)(𝑝𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))
168167eleq2d 2817 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))))
169168biimpa 502 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))
170 elfzofz 12671 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ (0...𝑦))
171170adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ (0...𝑦))
172 fvres 6360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘𝑖) = (𝑝𝑖))
173171, 172syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘𝑖) = (𝑝𝑖))
174 fzofzp1 12751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ (0...𝑦))
175174adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ (0...𝑦))
176 fvres 6360 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 + 1) ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1)))
177175, 176syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1)))
178177adantlr 753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1)))
179173, 178oveq12d 6823 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) = ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))
180179eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
181180rexbidva 3179 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
182 nnz 11583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
183 uzid 11886 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ (ℤ𝑦))
184182, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ𝑦))
185 peano2uz 11926 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (ℤ𝑦) → (𝑦 + 1) ∈ (ℤ𝑦))
186 fzoss2 12682 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 + 1) ∈ (ℤ𝑦) → (0..^𝑦) ⊆ (0..^(𝑦 + 1)))
187184, 185, 1863syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → (0..^𝑦) ⊆ (0..^(𝑦 + 1)))
188187ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → (0..^𝑦) ⊆ (0..^(𝑦 + 1)))
189 ssrexv 3800 . . . . . . . . . . . . . . . . . . . . . 22 ((0..^𝑦) ⊆ (0..^(𝑦 + 1)) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
190188, 189syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
191181, 190sylbid 230 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
192169, 191embantd 59 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
193192ex 449 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
194193adantr 472 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
195156, 194syld 47 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
196195ex 449 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
197196com34 91 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
198197com13 88 . . . . . . . . . . . . 13 ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
199139, 198sylbi 207 . . . . . . . . . . . 12 ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
200101, 199syl 17 . . . . . . . . . . 11 (((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
201200ex 449 . . . . . . . . . 10 ((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))))
202201com24 95 . . . . . . . . 9 ((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))))
203100, 202mpcom 38 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
204203ex 449 . . . . . . 7 (𝑦 ∈ ℕ → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (¬ (𝑝𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))))
205204com24 95 . . . . . 6 (𝑦 ∈ ℕ → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))))
206205imp 444 . . . . 5 ((𝑦 ∈ ℕ ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (¬ (𝑝𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))))
20799, 206pm2.61d 170 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
20849, 207ralrimi 3087 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
209208ex 449 . 2 (𝑦 ∈ ℕ → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))))
21010, 18, 26, 34, 46, 209nnind 11222 1 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  wrex 3043  Vcvv 3332  [wsbc 3568  csb 3666  wss 3707  {csn 4313   class class class wbr 4796  cres 5260  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121   + caddc 10123  *cxr 10257   < clt 10258  cle 10259  cn 11204  0cn0 11476  cz 11561  cuz 11871  [,)cico 12362  ...cfz 12511  ..^cfzo 12651  RePartciccp 41851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-ico 12366  df-fz 12512  df-fzo 12652  df-iccp 41852
This theorem is referenced by:  iccpartiun  41872  icceuelpart  41874  bgoldbtbnd  42199
  Copyright terms: Public domain W3C validator