MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2 Structured version   Visualization version   GIF version

Theorem isprm2 15174
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1nprm 15171 . . . . 5 ¬ 1 ∈ ℙ
2 eleq1 2670 . . . . . 6 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
32biimpcd 237 . . . . 5 (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈ ℙ))
41, 3mtoi 188 . . . 4 (𝑃 ∈ ℙ → ¬ 𝑃 = 1)
54neqned 2783 . . 3 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
65pm4.71i 661 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1))
7 isprm 15166 . . . 4 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜))
8 isprm2lem 15173 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
9 eqss 3577 . . . . . . . . . . 11 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃}))
109imbi2i 324 . . . . . . . . . 10 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
11 1idssfct 15172 . . . . . . . . . . 11 (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
12 jcab 902 . . . . . . . . . . 11 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
1311, 12mpbiran2 955 . . . . . . . . . 10 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1410, 13bitri 262 . . . . . . . . 9 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1514pm5.74ri 259 . . . . . . . 8 (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1615adantr 479 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
178, 16bitrd 266 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1817expcom 449 . . . . 5 (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
1918pm5.32d 668 . . . 4 (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
207, 19syl5bb 270 . . 3 (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2120pm5.32ri 667 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1))
22 ancom 464 . . . 4 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
23 anass 678 . . . 4 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2422, 23bitr4i 265 . . 3 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
25 ancom 464 . . . . 5 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
26 eluz2b3 11589 . . . . 5 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
2725, 26bitr4i 265 . . . 4 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈ (ℤ‘2))
2827anbi1i 726 . . 3 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
29 dfss2 3551 . . . . 5 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}))
30 breq1 4575 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑛𝑃𝑧𝑃))
3130elrab 3325 . . . . . . . . 9 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧𝑃))
32 vex 3170 . . . . . . . . . 10 𝑧 ∈ V
3332elpr 4140 . . . . . . . . 9 (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))
3431, 33imbi12i 338 . . . . . . . 8 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
35 impexp 460 . . . . . . . 8 (((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3634, 35bitri 262 . . . . . . 7 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3736albii 1735 . . . . . 6 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
38 df-ral 2895 . . . . . 6 (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3937, 38bitr4i 265 . . . . 5 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4029, 39bitri 262 . . . 4 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4140anbi2i 725 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
4224, 28, 413bitri 284 . 2 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
436, 21, 423bitri 284 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  wal 1472   = wceq 1474  wcel 1975  wne 2774  wral 2890  {crab 2894  wss 3534  {cpr 4121   class class class wbr 4572  cfv 5785  2𝑜c2o 7413  cen 7810  1c1 9788  cn 10862  2c2 10912  cuz 11514  cdvds 14762  cprime 15164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-2o 7420  df-oadd 7423  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-sup 8203  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-rp 11660  df-seq 12614  df-exp 12673  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-dvds 14763  df-prm 15165
This theorem is referenced by:  isprm3  15175  isprm4  15176  dvdsprime  15179  coprm  15202  isprm6  15205  prmirredlem  19600  znidomb  19669  perfectlem2  24667  perfectALTVlem2  39965
  Copyright terms: Public domain W3C validator