Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem5 Structured version   Visualization version   GIF version

Theorem knoppndvlem5 32813
Description: Lemma for knoppndv 32831. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem5.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem5.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem5.a (𝜑𝐴 ∈ ℝ)
knoppndvlem5.c (𝜑𝐶 ∈ ℝ)
knoppndvlem5.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦   𝑥,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑖)   𝐶(𝑥,𝑖)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑁(𝑖)

Proof of Theorem knoppndvlem5
StepHypRef Expression
1 fzfid 12966 . 2 (𝜑 → (0...𝐽) ∈ Fin)
2 knoppndvlem5.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
3 knoppndvlem5.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
4 knoppndvlem5.n . . . 4 (𝜑𝑁 ∈ ℕ)
54adantr 472 . . 3 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑁 ∈ ℕ)
6 knoppndvlem5.c . . . 4 (𝜑𝐶 ∈ ℝ)
76adantr 472 . . 3 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐶 ∈ ℝ)
8 knoppndvlem5.a . . . 4 (𝜑𝐴 ∈ ℝ)
98adantr 472 . . 3 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐴 ∈ ℝ)
10 elfznn0 12626 . . . 4 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
1110adantl 473 . . 3 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
122, 3, 5, 7, 9, 11knoppcnlem3 32791 . 2 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
131, 12fsumrecl 14664 1 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  ...cfz 12519  cfl 12785  cexp 13054  abscabs 14173  Σcsu 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616
This theorem is referenced by:  knoppndvlem6  32814  knoppndvlem14  32822  knoppndvlem15  32823
  Copyright terms: Public domain W3C validator