Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval4a Structured version   Visualization version   GIF version

Theorem lgsval4a 24944
 Description: Same as lgsval4 24942 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval4a ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 11343 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantl 482 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 nnne0 10997 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54adantl 482 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
6 lgsval4.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
76lgsval4 24942 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
81, 3, 5, 7syl3anc 1323 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
9 nngt0 10993 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
109adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
11 0re 9984 . . . . . . 7 0 ∈ ℝ
12 nnre 10971 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1312adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
14 ltnsym 10079 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1511, 13, 14sylancr 694 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1610, 15mpd 15 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1716intnanrd 962 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4069 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
19 nnnn0 11243 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
2120nn0ge0d 11298 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁)
2213, 21absidd 14095 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁)
2322fveq2d 6152 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
2418, 23oveq12d 6622 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁)))
25 simpr 477 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
26 nnuz 11667 . . . . . 6 ℕ = (ℤ‘1)
2725, 26syl6eleq 2708 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
286lgsfcl3 24943 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
291, 3, 5, 28syl3anc 1323 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ)
30 elfznn 12312 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
31 ffvelrn 6313 . . . . . 6 ((𝐹:ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℤ)
3229, 30, 31syl2an 494 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝐹𝑥) ∈ ℤ)
33 zmulcl 11370 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3433adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
3527, 32, 34seqcl 12761 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
3635zcnd 11427 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ)
3736mulid2d 10002 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
388, 24, 373eqtrd 2659 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ifcif 4058   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  -cneg 10211  ℕcn 10964  ℕ0cn0 11236  ℤcz 11321  ℤ≥cuz 11631  ...cfz 12268  seqcseq 12741  ↑cexp 12800  abscabs 13908  ℙcprime 15309   pCnt cpc 15465   /L clgs 24919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310  df-phi 15395  df-pc 15466  df-lgs 24920 This theorem is referenced by:  lgsmod  24948
 Copyright terms: Public domain W3C validator