MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   GIF version

Theorem metdsf 22554
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplll 797 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simplr 791 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑥𝑋)
3 simplr 791 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆𝑋)
43sselda 3588 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑦𝑋)
5 xmetcl 22041 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
61, 2, 4, 5syl3anc 1323 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (𝑥𝐷𝑦) ∈ ℝ*)
7 eqid 2626 . . . . . 6 (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝑥𝐷𝑦))
86, 7fmptd 6341 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*)
9 frn 6012 . . . . 5 ((𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ* → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
108, 9syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
11 infxrcl 12103 . . . 4 (ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
1210, 11syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
13 xmetge0 22054 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
141, 2, 4, 13syl3anc 1323 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 0 ≤ (𝑥𝐷𝑦))
1514ralrimiva 2965 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
16 ovex 6633 . . . . . . 7 (𝑥𝐷𝑦) ∈ V
1716rgenw 2924 . . . . . 6 𝑦𝑆 (𝑥𝐷𝑦) ∈ V
18 breq2 4622 . . . . . . 7 (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦)))
197, 18ralrnmpt 6325 . . . . . 6 (∀𝑦𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦)))
2017, 19ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
2115, 20sylibr 224 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)
22 0xr 10031 . . . . 5 0 ∈ ℝ*
23 infxrgelb 12105 . . . . 5 ((ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2410, 22, 23sylancl 693 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2521, 24mpbird 247 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
26 elxrge0 12220 . . 3 (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )))
2712, 25, 26sylanbrc 697 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞))
28 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2927, 28fmptd 6341 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  wss 3560   class class class wbr 4618  cmpt 4678  ran crn 5080  wf 5846  cfv 5850  (class class class)co 6605  infcinf 8292  0cc0 9881  +∞cpnf 10016  *cxr 10018   < clt 10019  cle 10020  [,]cicc 12117  ∞Metcxmt 19645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-2 11024  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12121  df-xmet 19653
This theorem is referenced by:  metds0  22556  metdstri  22557  metdsre  22559  metdseq0  22560  metdscnlem  22561  metdscn  22562  metnrmlem1a  22564  metnrmlem1  22565  lebnumlem1  22663
  Copyright terms: Public domain W3C validator