MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdstri Structured version   Visualization version   GIF version

Theorem metdstri 23459
Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdstri (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdstri
StepHypRef Expression
1 simprr 771 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℝ)
2 simprl 769 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℝ)
3 rexsub 12627 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
41, 2, 3syl2anc 586 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
54oveq2d 7172 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))))
6 simpll 765 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
76adantr 483 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
8 simprr 771 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
98adantr 483 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐵𝑋)
10 simprl 769 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
1110adantr 483 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐴𝑋)
121, 2resubcld 11068 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ)
132leidd 11206 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ≤ (𝐴𝐷𝐵))
14 xmetsym 22957 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
156, 10, 8, 14syl3anc 1367 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1615adantr 483 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1716eqcomd 2827 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
181recnd 10669 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℂ)
192recnd 10669 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℂ)
2018, 19nncand 11002 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))) = (𝐴𝐷𝐵))
2113, 17, 203brtr4d 5098 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))
22 blss2 23014 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) ∧ (((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
237, 9, 11, 12, 1, 21, 22syl33anc 1381 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
245, 23eqsstrd 4005 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
2524expr 459 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
266adantr 483 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐷 ∈ (∞Met‘𝑋))
278adantr 483 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵𝑋)
28 metdscn.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2928metdsf 23456 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3029adantr 483 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
3130, 10ffvelrnd 6852 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ (0[,]+∞))
32 eliccxr 12824 . . . . . . . . . . . . . . 15 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ℝ*)
3433adantr 483 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐹𝐴) ∈ ℝ*)
35 xmetcl 22941 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
366, 10, 8, 35syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
3736adantr 483 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ*)
3837xnegcld 12694 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
3934, 38xaddcld 12695 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
4039adantrr 715 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
41 pnfxr 10695 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → +∞ ∈ ℝ*)
43 pnfge 12526 . . . . . . . . . . . 12 (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
4440, 43syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
45 ssbl 23033 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) ∧ (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
4626, 27, 40, 42, 44, 45syl221anc 1377 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
47 simprr 771 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐹𝐴) = +∞)
4847oveq2d 7172 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)(𝐹𝐴)) = (𝐴(ball‘𝐷)+∞))
4910adantr 483 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐴𝑋)
50 simprl 769 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴𝐷𝐵) ∈ ℝ)
51 xblpnf 23006 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5226, 49, 51syl2anc 586 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5327, 50, 52mpbir2and 711 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵 ∈ (𝐴(ball‘𝐷)+∞))
54 blpnfctr 23046 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵 ∈ (𝐴(ball‘𝐷)+∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5526, 49, 53, 54syl3anc 1367 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5648, 55eqtr2d 2857 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)(𝐹𝐴)))
5746, 56sseqtrd 4007 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
5857expr 459 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) = +∞ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
59 elxrge0 12846 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
6059simprbi 499 . . . . . . . . . . . . 13 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
6131, 60syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐴))
62 ge0nemnf 12567 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)) → (𝐹𝐴) ≠ -∞)
6333, 61, 62syl2anc 586 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≠ -∞)
6433, 63jca 514 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
6564adantr 483 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
66 xrnemnf 12513 . . . . . . . . 9 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞) ↔ ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6765, 66sylib 220 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6825, 58, 67mpjaod 856 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
69 pnfnlt 12524 . . . . . . . . . . 11 ((𝐹𝐴) ∈ ℝ* → ¬ +∞ < (𝐹𝐴))
7033, 69syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ¬ +∞ < (𝐹𝐴))
7170adantr 483 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ¬ +∞ < (𝐹𝐴))
7236xnegcld 12694 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
7333, 72xaddcld 12695 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
74 xbln0 23024 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋 ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
756, 8, 73, 74syl3anc 1367 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
76 xposdif 12656 . . . . . . . . . . . . 13 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7736, 33, 76syl2anc 586 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7875, 77bitr4d 284 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ (𝐴𝐷𝐵) < (𝐹𝐴)))
79 breq1 5069 . . . . . . . . . . 11 ((𝐴𝐷𝐵) = +∞ → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ +∞ < (𝐹𝐴)))
8078, 79sylan9bb 512 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ +∞ < (𝐹𝐴)))
8180necon1bbid 3055 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (¬ +∞ < (𝐹𝐴) ↔ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅))
8271, 81mpbid 234 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅)
83 0ss 4350 . . . . . . . 8 ∅ ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))
8482, 83eqsstrdi 4021 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
85 xmetge0 22954 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
866, 10, 8, 85syl3anc 1367 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐴𝐷𝐵))
87 ge0nemnf 12567 . . . . . . . . . 10 (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴𝐷𝐵)) → (𝐴𝐷𝐵) ≠ -∞)
8836, 86, 87syl2anc 586 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≠ -∞)
8936, 88jca 514 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞))
90 xrnemnf 12513 . . . . . . . 8 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞) ↔ ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9189, 90sylib 220 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9268, 84, 91mpjaodan 955 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
93 sslin 4211 . . . . . 6 ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9492, 93syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9533xrleidd 12546 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ (𝐹𝐴))
96 simplr 767 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑆𝑋)
9728metdsge 23457 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
986, 96, 10, 33, 97syl31anc 1369 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
9995, 98mpbid 234 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
100 sseq0 4353 . . . . 5 (((𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ∧ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10194, 99, 100syl2anc 586 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10228metdsge 23457 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐵𝑋) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
1036, 96, 8, 73, 102syl31anc 1369 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
104101, 103mpbird 259 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵))
10530, 8ffvelrnd 6852 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ (0[,]+∞))
106 eliccxr 12824 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
107105, 106syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ℝ*)
108 elxrge0 12846 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
109108simprbi 499 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
110105, 109syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐵))
111 xlesubadd 12657 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐴𝐷𝐵) ≠ -∞ ∧ 0 ≤ (𝐹𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
11233, 36, 107, 61, 88, 110, 111syl33anc 1381 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
113104, 112mpbid 234 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)))
114 xaddcom 12634 . . 3 (((𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
115107, 36, 114syl2anc 586 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
116113, 115breqtrd 5092 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  cin 3935  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  infcinf 8905  cr 10536  0cc0 10537  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -𝑒cxne 12505   +𝑒 cxad 12506  [,]cicc 12742  ∞Metcxmet 20530  ballcbl 20532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-ec 8291  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-psmet 20537  df-xmet 20538  df-bl 20540
This theorem is referenced by:  metdsle  23460  metdscnlem  23463  metnrmlem1  23467
  Copyright terms: Public domain W3C validator