MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc Structured version   Visualization version   GIF version

Theorem modcyc 12645
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modcyc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modcyc
StepHypRef Expression
1 zre 11325 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 rpre 11783 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 remulcl 9965 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 · 𝐵) ∈ ℝ)
41, 2, 3syl2an 494 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℝ)
5 readdcl 9963 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝐵) ∈ ℝ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
64, 5sylan2 491 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
763impb 1257 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
8 simp3 1061 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
9 modval 12610 . . . . 5 (((𝐴 + (𝑁 · 𝐵)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
107, 8, 9syl2anc 692 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
11 recn 9970 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1080 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
134recnd 10012 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
14133adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
15 rpcnne0 11794 . . . . . . . . . . . 12 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16153ad2ant3 1082 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 divdir 10654 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑁 · 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
1812, 14, 16, 17syl3anc 1323 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
19 zcn 11326 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 divcan4 10656 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
21203expb 1263 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2219, 15, 21syl2an 494 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
23223adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2423oveq2d 6620 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2518, 24eqtrd 2655 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2625fveq2d 6152 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
27 rerpdivcl 11805 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
28273adant2 1078 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
29 simp2 1060 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℤ)
30 fladdz 12566 . . . . . . . . 9 (((𝐴 / 𝐵) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3128, 29, 30syl2anc 692 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3226, 31eqtrd 2655 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3332oveq2d 6620 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
34 rpcn 11785 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
35343ad2ant3 1082 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
36 reflcl 12537 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
3736recnd 10012 . . . . . . . . 9 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3827, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
39383adant2 1078 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
40193ad2ant2 1081 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℂ)
4135, 39, 40adddid 10008 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
42 mulcom 9966 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4319, 34, 42syl2an 494 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
44433adant1 1077 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4544eqcomd 2627 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
4645oveq2d 6620 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4733, 41, 463eqtrd 2659 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4847oveq2d 6620 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4934adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049, 38mulcld 10004 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
51503adant2 1078 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
5212, 51, 14pnpcan2d 10374 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5310, 48, 523eqtrd 2659 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
54 modval 12610 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
55543adant2 1078 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5653, 55eqtr4d 2658 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
57563com23 1268 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   + caddc 9883   · cmul 9885  cmin 10210   / cdiv 10628  cz 11321  +crp 11776  cfl 12531   mod cmo 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609
This theorem is referenced by:  modcyc2  12646  muladdmodid  12650  negmod  12655  modsumfzodifsn  12683  modxai  15696  wilthlem1  24694  wilthlem2  24695  lgsdir2lem1  24950  lgsdir2lem5  24954  lgseisenlem1  25000  dirkerper  39617  sqwvfoura  39749  sqwvfourb  39750  fourierswlem  39751  fouriersw  39752  3exp4mod41  40829  m1modmmod  41601
  Copyright terms: Public domain W3C validator