MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modxai Structured version   Visualization version   GIF version

Theorem modxai 15691
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
modxai.7 𝐶 ∈ ℕ0
modxai.8 𝐿 ∈ ℕ0
modxai.11 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
modxai.12 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
modxai.9 (𝐵 + 𝐶) = 𝐸
modxai.10 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
Assertion
Ref Expression
modxai ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modxai
StepHypRef Expression
1 modxai.9 . . . . 5 (𝐵 + 𝐶) = 𝐸
21oveq2i 6616 . . . 4 (𝐴↑(𝐵 + 𝐶)) = (𝐴𝐸)
3 modxai.2 . . . . . 6 𝐴 ∈ ℕ
43nncni 10975 . . . . 5 𝐴 ∈ ℂ
5 modxai.3 . . . . 5 𝐵 ∈ ℕ0
6 modxai.7 . . . . 5 𝐶 ∈ ℕ0
7 expadd 12839 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶)))
84, 5, 6, 7mp3an 1421 . . . 4 (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶))
92, 8eqtr3i 2650 . . 3 (𝐴𝐸) = ((𝐴𝐵) · (𝐴𝐶))
109oveq1i 6615 . 2 ((𝐴𝐸) mod 𝑁) = (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁)
11 nnexpcl 12810 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℕ)
123, 5, 11mp2an 707 . . . . . . . 8 (𝐴𝐵) ∈ ℕ
1312nnzi 11346 . . . . . . 7 (𝐴𝐵) ∈ ℤ
1413a1i 11 . . . . . 6 (⊤ → (𝐴𝐵) ∈ ℤ)
15 modxai.5 . . . . . . . 8 𝐾 ∈ ℕ0
1615nn0zi 11347 . . . . . . 7 𝐾 ∈ ℤ
1716a1i 11 . . . . . 6 (⊤ → 𝐾 ∈ ℤ)
18 nnexpcl 12810 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐶) ∈ ℕ)
193, 6, 18mp2an 707 . . . . . . . 8 (𝐴𝐶) ∈ ℕ
2019nnzi 11346 . . . . . . 7 (𝐴𝐶) ∈ ℤ
2120a1i 11 . . . . . 6 (⊤ → (𝐴𝐶) ∈ ℤ)
22 modxai.8 . . . . . . . 8 𝐿 ∈ ℕ0
2322nn0zi 11347 . . . . . . 7 𝐿 ∈ ℤ
2423a1i 11 . . . . . 6 (⊤ → 𝐿 ∈ ℤ)
25 modxai.1 . . . . . . . 8 𝑁 ∈ ℕ
26 nnrp 11786 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2725, 26ax-mp 5 . . . . . . 7 𝑁 ∈ ℝ+
2827a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℝ+)
29 modxai.11 . . . . . . 7 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
3029a1i 11 . . . . . 6 (⊤ → ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁))
31 modxai.12 . . . . . . 7 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
3231a1i 11 . . . . . 6 (⊤ → ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁))
3314, 17, 21, 24, 28, 30, 32modmul12d 12661 . . . . 5 (⊤ → (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁))
3433trud 1490 . . . 4 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)
35 modxai.10 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
36 modxai.4 . . . . . . . . 9 𝐷 ∈ ℤ
37 zcn 11327 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
3836, 37ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3925nncni 10975 . . . . . . . 8 𝑁 ∈ ℂ
4038, 39mulcli 9990 . . . . . . 7 (𝐷 · 𝑁) ∈ ℂ
41 modxai.6 . . . . . . . 8 𝑀 ∈ ℕ0
4241nn0cni 11249 . . . . . . 7 𝑀 ∈ ℂ
4340, 42addcomi 10172 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁))
4435, 43eqtr3i 2650 . . . . 5 (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁))
4544oveq1i 6615 . . . 4 ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4634, 45eqtri 2648 . . 3 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4741nn0rei 11248 . . . 4 𝑀 ∈ ℝ
48 modcyc 12642 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁))
4947, 27, 36, 48mp3an 1421 . . 3 ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)
5046, 49eqtri 2648 . 2 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = (𝑀 mod 𝑁)
5110, 50eqtri 2648 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wtru 1481  wcel 1992  (class class class)co 6605  cc 9879  cr 9880   + caddc 9884   · cmul 9886  cn 10965  0cn0 11237  cz 11322  +crp 11776   mod cmo 12605  cexp 12797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798
This theorem is referenced by:  mod2xi  15692  modxp1i  15693  1259lem3  15759  1259lem4  15760  2503lem2  15764  4001lem3  15769
  Copyright terms: Public domain W3C validator