Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfoura Structured version   Visualization version   GIF version

Theorem sqwvfoura 39752
Description: Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfoura.t 𝑇 = (2 · π)
sqwvfoura.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfoura.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sqwvfoura (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfoura
StepHypRef Expression
1 pire 24114 . . . . . 6 π ∈ ℝ
21renegcli 10286 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 9984 . . . . . 6 0 ∈ ℝ
6 negpilt0 38956 . . . . . . 7 -π < 0
72, 5, 6ltleii 10104 . . . . . 6 -π ≤ 0
8 pipos 24116 . . . . . . 7 0 < π
95, 1, 8ltleii 10104 . . . . . 6 0 ≤ π
102, 1elicc2i 12181 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1242 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 1red 9999 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 1 ∈ ℝ)
1413renegcld 10401 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -1 ∈ ℝ)
1513, 14ifcld 4103 . . . . . . . . . 10 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
17 sqwvfoura.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1816, 17fmptd 6340 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
1918adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℝ)
20 elioore 12147 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
2120adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
2219, 21ffvelrnd 6316 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℝ)
23 sqwvfoura.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2423nn0red 11296 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2524adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℝ)
2625, 21remulcld 10014 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
2726recoscld 14799 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
2822, 27remulcld 10014 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℝ)
2928recnd 10012 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℂ)
30 elioore 12147 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3130, 15syl 17 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
3217fvmpt2 6248 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
3330, 31, 32syl2anc 692 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
341a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
35 sqwvfoura.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
36 2rp 11781 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
37 pirp 24117 . . . . . . . . . . . . . . 15 π ∈ ℝ+
38 rpmulcl 11799 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3936, 37, 38mp2an 707 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
4035, 39eqeltri 2694 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4230, 41modcld 12614 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
43 picn 24115 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
44432timesi 11091 . . . . . . . . . . . . . . . 16 (2 · π) = (π + π)
4535, 44eqtri 2643 . . . . . . . . . . . . . . 15 𝑇 = (π + π)
4645oveq2i 6615 . . . . . . . . . . . . . 14 (-π + 𝑇) = (-π + (π + π))
472recni 9996 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4847, 43, 43addassi 9992 . . . . . . . . . . . . . 14 ((-π + π) + π) = (-π + (π + π))
4943negidi 10294 . . . . . . . . . . . . . . . . 17 (π + -π) = 0
5043, 47, 49addcomli 10172 . . . . . . . . . . . . . . . 16 (-π + π) = 0
5150oveq1i 6614 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (0 + π)
5243addid2i 10168 . . . . . . . . . . . . . . 15 (0 + π) = π
5351, 52eqtri 2643 . . . . . . . . . . . . . 14 ((-π + π) + π) = π
5446, 48, 533eqtr2ri 2650 . . . . . . . . . . . . 13 π = (-π + 𝑇)
552a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
56 2re 11034 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5756, 1remulcli 9998 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5835, 57eqeltri 2694 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
602rexri 10041 . . . . . . . . . . . . . . . 16 -π ∈ ℝ*
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
62 0red 9985 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
6362rexrd 10033 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ*)
64 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)0))
65 ioogtlb 39128 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6661, 63, 64, 65syl3anc 1323 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6755, 30, 59, 66ltadd1dd 10582 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6854, 67syl5eqbr 4648 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6958recni 9996 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
7069mulid2i 9987 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
7170eqcomi 2630 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
7271oveq2i 6615 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7372oveq1i 6614 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7430, 59readdcld 10013 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
758a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7662, 34, 74, 75, 68lttrd 10142 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7762, 74, 76ltled 10129 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
78 iooltub 39146 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7961, 63, 64, 78syl3anc 1323 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
8030, 62, 59, 79ltadd1dd 10582 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
8169a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8281addid2d 10181 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8380, 82breqtrd 4639 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
84 modid 12635 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8574, 41, 77, 83, 84syl22anc 1324 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
86 1zzd 11352 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
87 modcyc 12645 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8830, 41, 86, 87syl3anc 1323 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8973, 85, 883eqtr3a 2679 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
9068, 89breqtrd 4639 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
9134, 42, 90ltnsymd 10130 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9291iffalsed 4069 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9333, 92eqtrd 2655 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9493oveq1d 6619 . . . . . . 7 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9594adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9695mpteq2dva 4704 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))))
97 1cnd 10000 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
9897negcld 10323 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9924adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
10030adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10199, 100remulcld 10014 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
102101recoscld 14799 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
103 ioossicc 12201 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
104103a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
105 ioombl 23240 . . . . . . . 8 (-π(,)0) ∈ dom vol
106105a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10724adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
108 iccssre 12197 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1092, 5, 108mp2an 707 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
110109sseli 3579 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
111110adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
112107, 111remulcld 10014 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
113112recoscld 14799 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
114 0red 9985 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
115 coscn 24103 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
116115a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
117 ax-resscn 9937 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
118109, 117sstri 3592 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
119118a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
12024recnd 10012 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
121 ssid 3603 . . . . . . . . . . . 12 ℂ ⊆ ℂ
122121a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
123119, 120, 122constcncfg 39387 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
124119, 122idcncfg 39388 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
125123, 124mulcncf 23123 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
126116, 125cncfmpt1f 22624 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
127 cniccibl 23513 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
1283, 114, 126, 127syl3anc 1323 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
129104, 106, 113, 128iblss 23477 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
13098, 102, 129iblmulc2 23503 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13196, 130eqeltrd 2698 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
132 elioore 12147 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
133132, 15syl 17 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
134132, 133, 32syl2anc 692 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
13540a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
136 0red 9985 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
137136rexrd 10033 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ*)
1381rexri 10041 . . . . . . . . . . . . . . 15 π ∈ ℝ*
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
140 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0(,)π))
141 ioogtlb 39128 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
142137, 139, 140, 141syl3anc 1323 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
143136, 132, 142ltled 10129 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1441a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14558a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
146 iooltub 39146 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
147137, 139, 140, 146syl3anc 1323 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < π)
148 2timesgt 38964 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
14937, 148ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
150149, 35breqtrri 4640 . . . . . . . . . . . . . 14 π < 𝑇
151150a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π < 𝑇)
152132, 144, 145, 147, 151lttrd 10142 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
153 modid 12635 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
154132, 135, 143, 152, 153syl22anc 1324 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
155154, 147eqbrtrd 4635 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
156155iftrued 4066 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
157134, 156eqtrd 2655 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
158157oveq1d 6619 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
159158adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
160159mpteq2dva 4704 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))))
16124adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
162132adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℝ)
163161, 162remulcld 10014 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
164163recoscld 14799 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
165 ioossicc 12201 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
166165a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ⊆ (0[,]π))
167 ioombl 23240 . . . . . . . 8 (0(,)π) ∈ dom vol
168167a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ∈ dom vol)
16924adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
170 iccssre 12197 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1715, 1, 170mp2an 707 . . . . . . . . . . 11 (0[,]π) ⊆ ℝ
172171sseli 3579 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
173172adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
174169, 173remulcld 10014 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
175174recoscld 14799 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
176171, 117sstri 3592 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
177176a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
178177, 120, 122constcncfg 39387 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
179177, 122idcncfg 39388 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
180178, 179mulcncf 23123 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
181116, 180cncfmpt1f 22624 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
182 cniccibl 23513 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
183114, 4, 181, 182syl3anc 1323 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
184166, 168, 175, 183iblss 23477 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
18597, 164, 184iblmulc2 23503 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
186160, 185eqeltrd 2698 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1873, 4, 12, 29, 131, 186itgsplitioo 23510 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥))
188187oveq1d 6619 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π))
18995itgeq2dv 23454 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
19098, 102, 129itgmulc2 23506 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
191 oveq1 6611 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
192 ioosscn 39127 . . . . . . . . . . . . . . . 16 (-π(,)0) ⊆ ℂ
193192sseli 3579 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
194193mul02d 10178 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (0 · 𝑥) = 0)
195191, 194sylan9eq 2675 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) = 0)
196195fveq2d 6152 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
197 cos0 14805 . . . . . . . . . . . 12 (cos‘0) = 1
198196, 197syl6eq 2671 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
199198adantll 749 . . . . . . . . . 10 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
200199itgeq2dv 23454 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)1 d𝑥)
201 ioovolcl 23244 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (vol‘(-π(,)0)) ∈ ℝ)
2022, 5, 201mp2an 707 . . . . . . . . . . . 12 (vol‘(-π(,)0)) ∈ ℝ
203202a1i 11 . . . . . . . . . . 11 (𝜑 → (vol‘(-π(,)0)) ∈ ℝ)
204 itgconst 23491 . . . . . . . . . . 11 (((-π(,)0) ∈ dom vol ∧ (vol‘(-π(,)0)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
205106, 203, 97, 204syl3anc 1323 . . . . . . . . . 10 (𝜑 → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
206205adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
207 volioo 39471 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ -π ≤ 0) → (vol‘(-π(,)0)) = (0 − -π))
2082, 5, 7, 207mp3an 1421 . . . . . . . . . . . . . 14 (vol‘(-π(,)0)) = (0 − -π)
209 0cn 9976 . . . . . . . . . . . . . . 15 0 ∈ ℂ
210209, 43subnegi 10304 . . . . . . . . . . . . . 14 (0 − -π) = (0 + π)
211208, 210, 523eqtri 2647 . . . . . . . . . . . . 13 (vol‘(-π(,)0)) = π
212211a1i 11 . . . . . . . . . . . 12 (𝜑 → (vol‘(-π(,)0)) = π)
213212oveq2d 6620 . . . . . . . . . . 11 (𝜑 → (1 · (vol‘(-π(,)0))) = (1 · π))
21443a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℂ)
215214mulid2d 10002 . . . . . . . . . . 11 (𝜑 → (1 · π) = π)
216213, 215eqtrd 2655 . . . . . . . . . 10 (𝜑 → (1 · (vol‘(-π(,)0))) = π)
217216adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → (1 · (vol‘(-π(,)0))) = π)
218200, 206, 2173eqtrd 2659 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = π)
219218oveq2d 6620 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · π))
22043mulm1i 10419 . . . . . . . 8 (-1 · π) = -π
221220a1i 11 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · π) = -π)
222 iftrue 4064 . . . . . . . . 9 (𝑁 = 0 → if(𝑁 = 0, -π, 0) = -π)
223222eqcomd 2627 . . . . . . . 8 (𝑁 = 0 → -π = if(𝑁 = 0, -π, 0))
224223adantl 482 . . . . . . 7 ((𝜑𝑁 = 0) → -π = if(𝑁 = 0, -π, 0))
225219, 221, 2243eqtrd 2659 . . . . . 6 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
22624adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℝ)
22723nn0ge0d 11298 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
228227adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 ≤ 𝑁)
229 neqne 2798 . . . . . . . . 9 𝑁 = 0 → 𝑁 ≠ 0)
230229adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
231226, 228, 230ne0gt0d 10118 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 < 𝑁)
232 1cnd 10000 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 1 ∈ ℂ)
233232negcld 10323 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → -1 ∈ ℂ)
234233mul01d 10179 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · 0) = 0)
235120adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
2362a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ∈ ℝ)
237 0red 9985 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 0 ∈ ℝ)
2387a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ≤ 0)
239 simpr 477 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
240239gt0ne0d 10536 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
241235, 236, 237, 238, 240itgcoscmulx 39492 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁))
242120mul01d 10179 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · 0) = 0)
243242fveq2d 6152 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · 0)) = (sin‘0))
244 sin0 14804 . . . . . . . . . . . . . . 15 (sin‘0) = 0
245243, 244syl6eq 2671 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · 0)) = 0)
246120, 214mulneg2d 10428 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · -π) = -(𝑁 · π))
247246fveq2d 6152 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · -π)) = (sin‘-(𝑁 · π)))
248120, 214mulcld 10004 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · π) ∈ ℂ)
249 sinneg 14801 . . . . . . . . . . . . . . . 16 ((𝑁 · π) ∈ ℂ → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
250248, 249syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
251247, 250eqtrd 2655 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · -π)) = -(sin‘(𝑁 · π)))
252245, 251oveq12d 6622 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (0 − -(sin‘(𝑁 · π))))
253 0cnd 9977 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
254248sincld 14785 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · π)) ∈ ℂ)
255253, 254subnegd 10343 . . . . . . . . . . . . 13 (𝜑 → (0 − -(sin‘(𝑁 · π))) = (0 + (sin‘(𝑁 · π))))
256254addid2d 10181 . . . . . . . . . . . . 13 (𝜑 → (0 + (sin‘(𝑁 · π))) = (sin‘(𝑁 · π)))
257252, 255, 2563eqtrd 2659 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
258257adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
259258oveq1d 6619 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁) = ((sin‘(𝑁 · π)) / 𝑁))
26023nn0zd 11424 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
261 sinkpi 24175 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (sin‘(𝑁 · π)) = 0)
262260, 261syl 17 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑁 · π)) = 0)
263262oveq1d 6619 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
264263adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
265235, 240div0d 10744 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → (0 / 𝑁) = 0)
266264, 265eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = 0)
267241, 259, 2663eqtrd 2659 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = 0)
268267oveq2d 6620 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · 0))
269240neneqd 2795 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
270269iffalsed 4069 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, -π, 0) = 0)
271234, 268, 2703eqtr4d 2665 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
272231, 271syldan 487 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
273225, 272pm2.61dan 831 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
274189, 190, 2733eqtr2d 2661 . . . 4 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, -π, 0))
275159itgeq2dv 23454 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
27697, 164, 184itgmulc2 23506 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
277164, 184itgcl 23456 . . . . . . 7 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 ∈ ℂ)
278277mulid2d 10002 . . . . . 6 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥)
279 simpl 473 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 = 0)
280279oveq1d 6619 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = (0 · 𝑥))
281132recnd 10012 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
282281adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℂ)
283282mul02d 10178 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (0 · 𝑥) = 0)
284280, 283eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = 0)
285284fveq2d 6152 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
286285, 197syl6eq 2671 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
287286adantll 749 . . . . . . . . 9 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
288287itgeq2dv 23454 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(0(,)π)1 d𝑥)
289 ioovolcl 23244 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
2905, 1, 289mp2an 707 . . . . . . . . . 10 (vol‘(0(,)π)) ∈ ℝ
291 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
292 itgconst 23491 . . . . . . . . . 10 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
293167, 290, 291, 292mp3an 1421 . . . . . . . . 9 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
294293a1i 11 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
29543mulid2i 9987 . . . . . . . . . 10 (1 · π) = π
296 volioo 39471 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2975, 1, 9, 296mp3an 1421 . . . . . . . . . . . . 13 (vol‘(0(,)π)) = (π − 0)
29843subid1i 10297 . . . . . . . . . . . . 13 (π − 0) = π
299297, 298eqtri 2643 . . . . . . . . . . . 12 (vol‘(0(,)π)) = π
300299oveq2i 6615 . . . . . . . . . . 11 (1 · (vol‘(0(,)π))) = (1 · π)
301300a1i 11 . . . . . . . . . 10 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = (1 · π))
302 iftrue 4064 . . . . . . . . . 10 (𝑁 = 0 → if(𝑁 = 0, π, 0) = π)
303295, 301, 3023eqtr4a 2681 . . . . . . . . 9 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
304303adantl 482 . . . . . . . 8 ((𝜑𝑁 = 0) → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
305288, 294, 3043eqtrd 2659 . . . . . . 7 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
306262, 245oveq12d 6622 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = (0 − 0))
307253subidd 10324 . . . . . . . . . . . . 13 (𝜑 → (0 − 0) = 0)
308306, 307eqtrd 2655 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = 0)
309308oveq1d 6619 . . . . . . . . . . 11 (𝜑 → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
310309adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
311310, 265eqtrd 2655 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = 0)
3121a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → π ∈ ℝ)
3139a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 0 ≤ π)
314235, 237, 312, 313, 240itgcoscmulx 39492 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁))
315269iffalsed 4069 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, π, 0) = 0)
316311, 314, 3153eqtr4d 2665 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
317231, 316syldan 487 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
318305, 317pm2.61dan 831 . . . . . 6 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
319278, 318eqtrd 2655 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, π, 0))
320275, 276, 3193eqtr2d 2661 . . . 4 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, π, 0))
321274, 320oveq12d 6622 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) = (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)))
322321oveq1d 6619 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π) = ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π))
323222, 302oveq12d 6622 . . . . . . 7 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (-π + π))
324323, 50syl6eq 2671 . . . . . 6 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
325 iffalse 4067 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, -π, 0) = 0)
326 iffalse 4067 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, π, 0) = 0)
327325, 326oveq12d 6622 . . . . . . 7 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (0 + 0))
328 00id 10155 . . . . . . 7 (0 + 0) = 0
329327, 328syl6eq 2671 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
330324, 329pm2.61i 176 . . . . 5 (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0
331330oveq1i 6614 . . . 4 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = (0 / π)
3325, 8gtneii 10093 . . . . 5 π ≠ 0
33343, 332div0i 10703 . . . 4 (0 / π) = 0
334331, 333eqtri 2643 . . 3 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0
335334a1i 11 . 2 (𝜑 → ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0)
336188, 322, 3353eqtrd 2659 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  *cxr 10017   < clt 10018  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  0cn0 11236  cz 11321  +crp 11776  (,)cioo 12117  [,]cicc 12120   mod cmo 12608  sincsin 14719  cosccos 14720  πcpi 14722  cnccncf 22587  volcvol 23139  𝐿1cibl 23292  citg 23293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-ibl 23297  df-itg 23298  df-0p 23343  df-limc 23536  df-dv 23537
This theorem is referenced by:  fouriersw  39755
  Copyright terms: Public domain W3C validator