MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Structured version   Visualization version   GIF version

Theorem mulgrhm 19760
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 19738 . 2 ℤ = (Base‘ℤring)
2 zring1 19743 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 19741 . 2 · = (.r‘ℤring)
5 eqid 2626 . 2 (.r𝑅) = (.r𝑅)
6 zringring 19735 . . 3 ring ∈ Ring
76a1i 11 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 1z 11352 . . . 4 1 ∈ ℤ
10 oveq1 6612 . . . . 5 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 mulgghm2.f . . . . 5 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
12 ovex 6633 . . . . 5 (1 · 1 ) ∈ V
1310, 11, 12fvmpt 6240 . . . 4 (1 ∈ ℤ → (𝐹‘1) = (1 · 1 ))
149, 13ax-mp 5 . . 3 (𝐹‘1) = (1 · 1 )
15 eqid 2626 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1615, 3ringidcl 18484 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
17 mulgghm2.m . . . . 5 · = (.g𝑅)
1815, 17mulg1 17464 . . . 4 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
2014, 19syl5eq 2672 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
21 ringgrp 18468 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2221adantr 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
23 simprr 795 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2416adantr 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2515, 17mulgcl 17475 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2622, 23, 24, 25syl3anc 1323 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2715, 5, 3ringlidm 18487 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2826, 27syldan 487 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2928oveq2d 6621 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
30 simpl 473 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
31 simprl 793 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3215, 17, 5mulgass2 18517 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3330, 31, 24, 26, 32syl13anc 1325 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3415, 17mulgass 17495 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3522, 31, 23, 24, 34syl13anc 1325 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3629, 33, 353eqtr4rd 2671 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
37 zmulcl 11371 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3837adantl 482 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
39 oveq1 6612 . . . . 5 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
40 ovex 6633 . . . . 5 ((𝑥 · 𝑦) · 1 ) ∈ V
4139, 11, 40fvmpt 6240 . . . 4 ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
4238, 41syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
43 oveq1 6612 . . . . . 6 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
44 ovex 6633 . . . . . 6 (𝑥 · 1 ) ∈ V
4543, 11, 44fvmpt 6240 . . . . 5 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
46 oveq1 6612 . . . . . 6 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
47 ovex 6633 . . . . . 6 (𝑦 · 1 ) ∈ V
4846, 11, 47fvmpt 6240 . . . . 5 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
4945, 48oveqan12d 6624 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5049adantl 482 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5136, 42, 503eqtr4d 2670 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
5217, 11, 15mulgghm2 19759 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
5321, 16, 52syl2anc 692 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
541, 2, 3, 4, 5, 7, 8, 20, 51, 53isrhm2d 18644 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  cmpt 4678  cfv 5850  (class class class)co 6605  1c1 9882   · cmul 9886  cz 11322  Basecbs 15776  .rcmulr 15858  Grpcgrp 17338  .gcmg 17456   GrpHom cghm 17573  1rcur 18417  Ringcrg 18463   RingHom crh 18628  ringzring 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-fz 12266  df-seq 12739  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-grp 17341  df-minusg 17342  df-mulg 17457  df-subg 17507  df-ghm 17574  df-cmn 18111  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-rnghom 18631  df-subrg 18694  df-cnfld 19661  df-zring 19733
This theorem is referenced by:  mulgrhm2  19761
  Copyright terms: Public domain W3C validator