Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm2 Structured version   Visualization version   GIF version

Theorem mulgrhm2 20041
 Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 zringbas 20018 . . . . . . . . . 10 ℤ = (Base‘ℤring)
2 eqid 2752 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31, 2rhmf 18920 . . . . . . . . 9 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅))
43adantl 473 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅))
54feqmptd 6403 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓𝑛)))
6 rhmghm 18919 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅))
76ad2antlr 765 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅))
8 simpr 479 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
9 1zzd 11592 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
10 eqid 2752 . . . . . . . . . . 11 (.g‘ℤring) = (.g‘ℤring)
11 mulgghm2.m . . . . . . . . . . 11 · = (.g𝑅)
121, 10, 11ghmmulg 17865 . . . . . . . . . 10 ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
137, 8, 9, 12syl3anc 1473 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
14 ax-1cn 10178 . . . . . . . . . . . . 13 1 ∈ ℂ
15 cnfldmulg 19972 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
1614, 15mpan2 709 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
17 1z 11591 . . . . . . . . . . . . 13 1 ∈ ℤ
1816adantr 472 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
19 zringmulg 20020 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1))
2018, 19eqtr4d 2789 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
2117, 20mpan2 709 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
22 zcn 11566 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322mulid1d 10241 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2416, 21, 233eqtr3d 2794 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛)
2524adantl 473 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛)
2625fveq2d 6348 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓𝑛))
27 zring1 20023 . . . . . . . . . . . 12 1 = (1r‘ℤring)
28 mulgrhm.1 . . . . . . . . . . . 12 1 = (1r𝑅)
2927, 28rhm1 18924 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 )
3029ad2antlr 765 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 )
3130oveq2d 6821 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 ))
3213, 26, 313eqtr3d 2794 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓𝑛) = (𝑛 · 1 ))
3332mpteq2dva 4888 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
345, 33eqtrd 2786 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
35 mulgghm2.f . . . . . 6 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
3634, 35syl6eqr 2804 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹)
37 velsn 4329 . . . . 5 (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹)
3836, 37sylibr 224 . . . 4 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹})
3938ex 449 . . 3 (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹}))
4039ssrdv 3742 . 2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹})
4111, 35, 28mulgrhm 20040 . . 3 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
4241snssd 4477 . 2 (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅))
4340, 42eqssd 3753 1 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131  {csn 4313   ↦ cmpt 4873  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805  ℂcc 10118  1c1 10121   · cmul 10125  ℤcz 11561  Basecbs 16051  .gcmg 17733   GrpHom cghm 17850  1rcur 18693  Ringcrg 18739   RingHom crh 18906  ℂfldccnfld 19940  ℤringzring 20012 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-addf 10199  ax-mulf 10200 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-seq 12988  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-grp 17618  df-minusg 17619  df-mulg 17734  df-subg 17784  df-ghm 17851  df-cmn 18387  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-rnghom 18909  df-subrg 18972  df-cnfld 19941  df-zring 20013 This theorem is referenced by:  zrhval2  20051  zrhrhmb  20053  irinitoringc  42571
 Copyright terms: Public domain W3C validator