MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddge22np1 Structured version   Visualization version   GIF version

Theorem oddge22np1 15698
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
oddge22np1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2900 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
2 nn0z 12006 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 484 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
4 eluz2 12250 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)))
5 2re 11712 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 2 ∈ ℝ)
7 1red 10642 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 1 ∈ ℝ)
8 2nn0 11915 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
10 id 22 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
119, 10nn0mulcld 11961 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
1211nn0red 11957 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℝ)
136, 7, 12lesubaddd 11237 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1)))
14 2m1e1 11764 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
1514breq1i 5073 . . . . . . . . . . . . . . . 16 ((2 − 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛))
16 nn0re 11907 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
17 2rp 12395 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℝ+)
197, 16, 18ledivmuld 12485 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
20 halfgt0 11854 . . . . . . . . . . . . . . . . . 18 0 < (1 / 2)
21 0red 10644 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → 0 ∈ ℝ)
22 halfre 11852 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1 / 2) ∈ ℝ)
24 ltletr 10732 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2521, 23, 16, 24syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2620, 25mpani 694 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 → 0 < 𝑛))
2719, 26sylbird 262 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (1 ≤ (2 · 𝑛) → 0 < 𝑛))
2815, 27syl5bi 244 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛))
2913, 28sylbird 262 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛))
3029com12 32 . . . . . . . . . . . . 13 (2 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
31303ad2ant3 1131 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
324, 31sylbi 219 . . . . . . . . . . 11 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
3332imp 409 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 0 < 𝑛)
34 elnnz 11992 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
353, 33, 34sylanbrc 585 . . . . . . . . 9 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ)
3635ex 415 . . . . . . . 8 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ))
371, 36syl6bir 256 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ)))
3837com13 88 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑁 ∈ (ℤ‘2) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ)))
3938impcom 410 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ))
4039pm4.71rd 565 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4140bicomd 225 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁))
4241rexbidva 3296 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
43 nnssnn0 11901 . . 3 ℕ ⊆ ℕ0
44 rexss 4038 . . 3 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4543, 44mp1i 13 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
46 eluzge2nn0 12288 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
47 oddnn02np1 15697 . . 3 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4846, 47syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
4942, 45, 483bitr4rd 314 1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  +crp 12390  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-dvds 15608
This theorem is referenced by:  lighneallem3  43821
  Copyright terms: Public domain W3C validator