MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odi Structured version   Visualization version   GIF version

Theorem odi 7644
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. (Contributed by NM, 26-Dec-2004.)
Assertion
Ref Expression
odi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))

Proof of Theorem odi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6643 . . . . . 6 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
21oveq2d 6651 . . . . 5 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 ∅)))
3 oveq2 6643 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
43oveq2d 6651 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
52, 4eqeq12d 2635 . . . 4 (𝑥 = ∅ → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅))))
6 oveq2 6643 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
76oveq2d 6651 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)))
8 oveq2 6643 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
98oveq2d 6651 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))
107, 9eqeq12d 2635 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))))
11 oveq2 6643 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1211oveq2d 6651 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)))
13 oveq2 6643 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
1413oveq2d 6651 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))
1512, 14eqeq12d 2635 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
16 oveq2 6643 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1716oveq2d 6651 . . . . 5 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
18 oveq2 6643 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶))
1918oveq2d 6651 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
2017, 19eqeq12d 2635 . . . 4 (𝑥 = 𝐶 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
21 omcl 7601 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
22 oa0 7581 . . . . . 6 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
24 om0 7582 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
2524adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ∅) = ∅)
2625oveq2d 6651 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
27 oa0 7581 . . . . . . 7 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
2827adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 ∅) = 𝐵)
2928oveq2d 6651 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = (𝐴 ·𝑜 𝐵))
3023, 26, 293eqtr4rd 2665 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
31 oveq1 6642 . . . . . . . 8 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
32 oasuc 7589 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
33323adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3433oveq2d 6651 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)))
35 oacl 7600 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On)
36 omsuc 7591 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
3735, 36sylan2 491 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
38373impb 1258 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
3934, 38eqtrd 2654 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
40 omsuc 7591 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
41403adant2 1078 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4241oveq2d 6651 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
43 omcl 7601 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
44 oaass 7626 . . . . . . . . . . . . . . . . . 18 (((𝐴 ·𝑜 𝐵) ∈ On ∧ (𝐴 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4521, 44syl3an1 1357 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4643, 45syl3an2 1358 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
47463exp 1262 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
4847exp4b 631 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))))
4948pm2.43a 54 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5049com4r 94 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5150pm2.43i 52 . . . . . . . . . . 11 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
52513imp 1254 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
5342, 52eqtr4d 2657 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
5439, 53eqeq12d 2635 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) ↔ ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴)))
5531, 54syl5ibr 236 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
56553exp 1262 . . . . . 6 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
5756com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
5857impd 447 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))))
59 vex 3198 . . . . . . . . . . . . . 14 𝑥 ∈ V
60 limelon 5776 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6159, 60mpan 705 . . . . . . . . . . . . 13 (Lim 𝑥𝑥 ∈ On)
62 oacl 7600 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
63 om0r 7604 . . . . . . . . . . . . . . 15 ((𝐵 +𝑜 𝑥) ∈ On → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ∅)
65 om0r 7604 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → (∅ ·𝑜 𝐵) = ∅)
66 om0r 7604 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → (∅ ·𝑜 𝑥) = ∅)
6765, 66oveqan12d 6654 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)) = (∅ +𝑜 ∅))
68 0elon 5766 . . . . . . . . . . . . . . . 16 ∅ ∈ On
69 oa0 7581 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +𝑜 ∅) = ∅
7167, 70syl6req 2671 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7264, 71eqtrd 2654 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7361, 72sylan2 491 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7473ancoms 469 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
75 oveq1 6642 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (∅ ·𝑜 (𝐵 +𝑜 𝑥)))
76 oveq1 6642 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
77 oveq1 6642 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
7876, 77oveq12d 6653 . . . . . . . . . . . 12 (𝐴 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7975, 78eqeq12d 2635 . . . . . . . . . . 11 (𝐴 = ∅ → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥))))
8074, 79syl5ibr 236 . . . . . . . . . 10 (𝐴 = ∅ → ((Lim 𝑥𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))
8180expd 452 . . . . . . . . 9 (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
8281com3r 87 . . . . . . . 8 (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
8382imp 445 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))
8483a1dd 50 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
85 simplr 791 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝐵 ∈ On)
8662ancoms 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
87 onelon 5736 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 +𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On)
8886, 87sylan 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On)
89 ontri1 5745 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ¬ 𝑧𝐵))
90 oawordex 7622 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
9189, 90bitr3d 270 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
9285, 88, 91syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
93 oaord 7612 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ↔ (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
94933expb 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ↔ (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
95 eleq1 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ↔ 𝑧 ∈ (𝐵 +𝑜 𝑥)))
9694, 95sylan9bb 735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑣𝑥𝑧 ∈ (𝐵 +𝑜 𝑥)))
97 iba 524 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
9897adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
9996, 98bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +𝑜 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10099an32s 845 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣 ∈ On ∧ (𝐵 +𝑜 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +𝑜 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
101100biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐵 +𝑜 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +𝑜 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
102101exp4c 635 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))))
103102com4r 94 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))))
104103imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧))))
105104reximdvai 3012 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10692, 105sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (¬ 𝑧𝐵 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
107106orrd 393 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10861, 107sylanl1 681 . . . . . . . . . . . . . . . 16 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
109108adantlrl 755 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
110109adantlr 750 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
111 0ellim 5775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Lim 𝑥 → ∅ ∈ 𝑥)
112 om00el 7641 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝑥) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥)))
113112biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
114111, 113sylan2i 686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
11561, 114sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
116115exp4b 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·𝑜 𝑥)))))
117116com4r 94 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·𝑜 𝑥)))))
118117pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . 22 (Lim 𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·𝑜 𝑥))))
119118imp31 448 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·𝑜 𝑥))
120119a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·𝑜 𝑥)))
121120adantlrr 756 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·𝑜 𝑥)))
122 omordi 7631 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵)))
123122ancom1s 846 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵)))
124 onelss 5754 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 𝐵)))
12522sseq2d 3625 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅) ↔ (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 𝐵)))
126124, 125sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
128127adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
129123, 128syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
130129adantll 749 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
131121, 130jcad 555 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (∅ ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅))))
132 oveq2 6643 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
133132sseq2d 3625 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ∅ → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ↔ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
134133rspcev 3304 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
135131, 134syl6 35 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
136135adantrr 752 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
137 omordi 7631 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
13861, 137sylanl1 681 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
139138adantrd 484 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
140139adantrr 752 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
141 oveq2 6643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐵 +𝑜 𝑦) = (𝐵 +𝑜 𝑣))
142141oveq2d 6651 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))
143 oveq2 6643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐴 ·𝑜 𝑦) = (𝐴 ·𝑜 𝑣))
144143oveq2d 6651 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
145142, 144eqeq12d 2635 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
146145rspccv 3301 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
147 oveq2 6643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = (𝐴 ·𝑜 𝑧))
148 eqeq1 2624 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = (𝐴 ·𝑜 𝑧) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧)))
149147, 148syl5ib 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧)))
150 eqimss2 3650 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
151149, 150syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
152151imim2i 16 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → (𝑣𝑥 → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))))
153152impd 447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
154146, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
155154ad2antll 764 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
156140, 155jcad 555 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ((𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))))
157 oveq2 6643 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
158157sseq2d 3625 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ↔ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
159158rspcev 3304 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
161160rexlimdvw 3030 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
162161adantlrr 756 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
163136, 162jaod 395 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
164163adantr 481 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
165110, 164mpd 15 . . . . . . . . . . . . 13 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
166165ralrimiva 2963 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
167 iunss2 4556 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
168166, 167syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
169 omordlim 7642 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
170169ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
17159, 170mpanr1 718 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
172171ancoms 469 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
173172imp 445 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
174173adantlrr 756 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
175174adantlr 750 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
176 oaordi 7611 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
17761, 176sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
178177imp 445 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑣𝑥) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥))
179178adantlrl 755 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥))
180179a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
181180adantlr 750 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
182 limord 5772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
183 ordelon 5735 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑥𝑣𝑥) → 𝑣 ∈ On)
184182, 183sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝑣𝑥) → 𝑣 ∈ On)
185 omcl 7601 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·𝑜 𝑣) ∈ On)
186185ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝑣) ∈ On)
187186adantrr 752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 𝑣) ∈ On)
18821adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 𝐵) ∈ On)
189 oaordi 7611 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·𝑜 𝑣) ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
190187, 188, 189syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
191184, 190sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
192191an32s 845 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
193192adantlr 750 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
194145rspccva 3303 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ∧ 𝑣𝑥) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
195194eleq2d 2685 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
196195adantll 749 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
197193, 196sylibrd 249 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
198 oacl 7600 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +𝑜 𝑣) ∈ On)
199198ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝑣) ∈ On)
200 omcl 7601 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑣) ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
201199, 200sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
202201an12s 842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
203184, 202sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
204203an32s 845 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
205 onelss 5754 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
207206adantlr 750 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
208197, 207syld 47 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
209181, 208jcad 555 . . . . . . . . . . . . . . . . . 18 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))))
210 oveq2 6643 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +𝑜 𝑣) → (𝐴 ·𝑜 𝑧) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))
211210sseq2d 3625 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +𝑜 𝑣) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
212211rspcev 3304 . . . . . . . . . . . . . . . . . 18 (((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
213209, 212syl6 35 . . . . . . . . . . . . . . . . 17 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
214213rexlimdva 3027 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
215214adantr 481 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
216175, 215mpd 15 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
217216ralrimiva 2963 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → ∀𝑤 ∈ (𝐴 ·𝑜 𝑥)∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
218 iunss2 4556 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝐴 ·𝑜 𝑥)∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
219217, 218syl 17 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
220219adantrl 751 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
221168, 220eqssd 3612 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
222 oalimcl 7625 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +𝑜 𝑥))
22359, 222mpanr1 718 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +𝑜 𝑥))
224223ancoms 469 . . . . . . . . . . . . . 14 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +𝑜 𝑥))
225224anim2i 592 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)))
226225an12s 842 . . . . . . . . . . . 12 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)))
227 ovex 6663 . . . . . . . . . . . . 13 (𝐵 +𝑜 𝑥) ∈ V
228 omlim 7598 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ ((𝐵 +𝑜 𝑥) ∈ V ∧ Lim (𝐵 +𝑜 𝑥))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
229227, 228mpanr1 718 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
230226, 229syl 17 . . . . . . . . . . 11 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
231230adantr 481 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
23221ad2antlr 762 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 𝐵) ∈ On)
23359jctl 563 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑥 ∈ V ∧ Lim 𝑥))
234233anim2i 592 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
235234ancoms 469 . . . . . . . . . . . . . . 15 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
236 omlimcl 7643 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
237235, 236sylan 488 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
238237adantlrr 756 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
239 ovex 6663 . . . . . . . . . . . . 13 (𝐴 ·𝑜 𝑥) ∈ V
240238, 239jctil 559 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑥) ∈ V ∧ Lim (𝐴 ·𝑜 𝑥)))
241 oalim 7597 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝐵) ∈ On ∧ ((𝐴 ·𝑜 𝑥) ∈ V ∧ Lim (𝐴 ·𝑜 𝑥))) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
242232, 240, 241syl2anc 692 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
243242adantrr 752 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
244221, 231, 2433eqtr4d 2664 . . . . . . . . 9 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))
245244exp43 639 . . . . . . . 8 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))))
246245com3l 89 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))))
247246imp 445 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
24884, 247oe0lem 7578 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
249248com12 32 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
2505, 10, 15, 20, 30, 58, 249tfinds3 7049 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
251250expdcom 455 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))))
2522513imp 1254 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wrex 2910  Vcvv 3195  wss 3567  c0 3907   ciun 4511  Ord word 5710  Oncon0 5711  Lim wlim 5712  suc csuc 5713  (class class class)co 6635   +𝑜 coa 7542   ·𝑜 comu 7543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-omul 7550
This theorem is referenced by:  omass  7645  oeeui  7667  oaabs2  7710
  Copyright terms: Public domain W3C validator